>>点击进入原题测试<< 思路:用KMP优化的暴力写了一遍,超时!没有充分利用KMP中next数组的性质. 首先这个题是肯定要用到KMP算法的,然后会有一个next[]数组. 用一个数组来sum[i]表示长度为i的前缀的字符串有多少个,于是默认所有初始值为1: 然后倒着递推sum[next[i]]+=sum[i];原理的话自己找个样例手动模拟一下应该就清楚了,真的是很神奇的一个规律. 注意使用长整形,有个样例会溢出! 参照一下帖子 https://blog.csdn.net/lar…
题目链接 51nod 1277 字符串中的最大值 题解 对于单串,考虑多串的fail树,发现next数组的关系形成树形结构 建出next树,对于每一个前缀,他出现的次数就是他子树的大小 代码 #include<cstdio> #include<cstring> #include<algorithm> inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9…
1277 字符串中的最大值 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如:abcd的所有前缀为a, ab, abc, abcd. 给出一个字符串S,求其所有前缀中,字符长度与出现次数的乘积的最大值. 例如:S = "abababa" 所有的前缀如下:   "a", 长度与出现次数的乘积 1 * 4 = 4, "ab",长度…
题意: 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如:abcd的所有前缀为a, ab, abc, abcd. 给出一个字符串S,求其所有前缀中,字符长度与出现次数的乘积的最大值.   题解: 我们前缀匹配的位置个数随长度是递减的(即长度越长,位置越少). 用拓展kmp对自身求Next数组 我们就知道了每个前缀能匹配的最大后缀的那些位置 然后按照匹配长度倒序相加即是匹配的位置个数.   #include <iostream> #include <cstring> usin…
题意 : 一个字符串的前缀是指包含该字符第一个字母的连续子串,例如:abcd的所有前缀为a, ab, abc, abcd.给出一个字符串S,求其所有前缀中,字符长度与出现次数的乘积的最大值.例如:S = "abababa" 所有的前缀如下: "a", 长度与出现次数的乘积 1 * 4 = 4, "ab",长度与出现次数的乘积 2 * 3 = 6, "aba", 长度与出现次数的乘积 3 * 3 = 9, "abab&…
题意: 有一个字符串T.字符串S的F函数值可以如下计算:F(S) = L * S在T中出现的次数(L为字符串S的长度).求所有T的子串S中,函数F(S)的最大值. 题解: 求T的后缀自动机,然后所有每个后缀自动机的结点u 求出endpos[u]*maxlen[u]中的最大值即可 #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; ; , last = ; ], p…
传送门 题意: 此题意很好理解,便不在此赘述: 题解: 解题思路:KMP求字符串最小循环节+拓展KMP ①首先,根据KMP求字符串最小循环节的算法求出字符串s的最小循环节的长度,记为 k: ②根据拓展KMP求出字符串s的nex[]数组,那么对于由第 i 位打头构成的新数b,如何判断其与原数a的大小关系呢? 1)如果 i%k == 0,那么b == a: 2)如果 i%k ≠ 0 ,令L=nex[i],那么只需判断s[ i+L ]与s[ L ]的大小关系即可,需要注意的是,如果i+L = len呢…
题意: 给定一个字符串S,找到另外一个字符串T,T既是S的前缀,也是S的后缀,并且在中间某个地方也出现一次,并且这三次出现不重合.求T最长的长度. 例如:S = "abababababa",其中"aba"既是S的前缀,也是S的后缀,中间还出现了一次,并且同前缀后缀均不重合.所以输出"aba"的长度3.如果找不到一个符合条件的字符,输出0.   题解: 先对S做一次拓展kmp,求出next数组 然后其实next每一个数就对应了一个前缀匹配的情况.…
拓展KMP解决的问题是给两个串S和T,长度分别是n和m,求S的每一个后缀子串与T的最长公共前缀分别是多少,记作extend数组,也就是说extend[i]表示S[i,n-1](i从0开始)和T的最长公共前缀长度. 需要注意的是如果extend[i]=m,即S[i,n-1]和T的最长公共前缀长度是m(正好是T的长度),那么就表示T在S中找到匹配而且起始位置是i,这就解释了为什么这个算法叫做拓展KMP了. 其实大致和KMP有异曲同工之妙,都是匹配,都是借用一个next数组. 下面举一个例子,S=”a…
借鉴自:https://blog.csdn.net/dyx404514/article/details/41831947 定义母串S,和子串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前缀,也就是说,设extend数组,extend[i]表示T与S[i,n-1]的最长公共前缀,要求出所有extend[i](0<=i<n). 注意到,如果有一个位置extend[i]=m,则表示T在S中出现,而且是在位置i出现,这就是标准的KMP问题,所以说拓展kmp是对KMP算法的扩展,所以…