首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【NOIP2017 D1 T1 小凯的疑惑】
】的更多相关文章
【NOIP2017 D1 T1 小凯的疑惑】
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品. 输入输出格式 输入格式: 输入数据仅一行,包含两个正整数 aa 和 bb,它们之间用一个空格隔开,表示小凯手 中金币的面值. 输出格式: 输出文件仅一行,一个正整数 NN,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的…
NOIP2017 Day1 T1 小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在小凯无法准确支付的商品. 输入格式: 输入数据仅一行,包含两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯 中金币的面值. 输出格式: 输出文件仅一行,一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值. 不多说,找了半个…
[NOIP2017提高组]小凯的疑惑-扩展欧几里得
#include<bits/stdc++.h> using namespace std; long long a,b,x,y,ans,tmp; inline void ex_gcd(long long a,long long b,long long &x,long long &y){ if(!b){ x = 1; y = 0; return; } ex_gcd(b,a%b,y,x); y -= (a/b)*x; } int main(){ cin>>a>>…
[NOIp2017提高组]小凯的疑惑
题目大意: 给你两个数a,b,保证a与b互质,求最大的x满足不能被表示成若干个a与b的和. 思路: 据说是小学奥数题. 考场上先写了个a*b的60分DP,然后打表发现答案就是(a-1)*(b-1)-1. #include<cstdio> #include<cctype> typedef long long int64; inline int getint() { register char ch; while(!isdigit(ch=getchar())); register ';…
联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能整除\(gcd(n,m)\),那么一定不是好数. 所以,我们把\(n,m,q\)分别除以\(gcd(n,m)\),是不影响得出的"好数"数量的. 好,那么现在\(n,m\)就互质了. 现在,就把问题转化为了(用比较形象化的语言来说,就是)有\(n,m\)互质,求\([1,q]\)中有多少个…
【比赛】NOIP2017 小凯的疑惑
找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m个剩余类,分别为 mk,mk+1,mk+2,……,mk+(m-1) 分别记为{0(mod m)},{1(mod m)}…… 而n的倍数肯定分布在这m个剩余类中 因为gcd(m,n)=1,所以每个剩余类中都有一些数是$n$的倍数,并且是平均分配 设 kmin = min { k | nk ∈ {i (…
luogu 3951 小凯的疑惑
noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为ax+by(x,y为自然数)的形式 思路: 结论题:ans=a*b-a-b #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio…
Luogu [P3951] 小凯的疑惑
题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可以准确支付这个物品. 显然,可以列出一个不定方程ma+nb=k,(m n,为未知数)由于m,n是金币个数,所以m>-1,n>-1, 这个不定方程的通解为m=m0+bt,n=n0-at,(仅仅为写法的一种,不过这样写最方便,m0,n0为方程的一组解), m0+bt>-1,n0-at>-1…
NOIP 2017 小凯的疑惑
# NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : \(nx\equiv\)a (mod y)若将x依次加倍则可以得 nx mod y|ans ---|---| x| a | 2x| 2a mod y 3x|3a mod y| 4x |4a mod y| ...|...| yx|ya mod y| 这时a的值刚好把 0 ~ y-1内的所有数字都遍历了一遍.…
2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品. 输入输出格式 输入格式: 两个正整数 a 和 b,它们之间用一个空格隔开,表示小凯中金币的面值. 输出格式: 一个正整数 N,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值. 输入…