Spark MLlib中的OneHot哑变量实践】的更多相关文章

在机器学习中,线性回归和逻辑回归算是最基础入门的算法,很多书籍都把他们作为第一个入门算法进行介绍.除了本身的公式之外,逻辑回归和线性回归还有一些必须要了解的内容.一个很常用的知识点就是虚拟变量(也叫做哑变量)-- 用于表示一些无法直接应用到线性公式中的变量(特征). 举个例子: 通过身高来预测体重,可以简单的通过一个线性公式来表示,y=ax+b.其中x为身高,y为体重. 现在想要多加一些特征(参数),比如性别. 那么问题来了:如何在一个公式中表示性别呢? 这就是哑变量的作用,它可以通过扩展特征值…
Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现 发表于2015-05-07 21:58| 10255次阅读| 来源<程序员>电子刊| 9 条评论| 作者孟祥瑞 大数据机器学习开源SparkMLlibALS 摘要:MLlib在1.3中添加了不少机器学习及数据挖掘算法:研究主题分布的LDA.估计点集分布的GMM.提取频繁项集的 FP-growth等等.本文主要聚焦ALS的实现及其在1.3中的提升. 深受用户喜爱的大数据处理平台 Apache Spark 1.3 于前不久发…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使用到的正则化方法是SquaredL2Updater. 算法实现上使用到了由scalanlp的成员项目breeze库中的BreezeLBFGS函数,mllib中自定义了BreezeLBFGS所需要的DiffFunctions. runLBFGS函数的源码实现如下 def runLBFGS( data:…
聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性),使用聚类算法将数据集划分为k个子集,并且要求每个子集内部的元素之间的差异度尽可能低,而不同子集元素的差异度尽可能高.简而言之,就是通过聚类算法处理给定的数据集,将具有相同或类似的属性(特征)的数据划分为一组,并且不同组之间的属性相差会比较大. K-Means算法是聚类算法中应用比较广泛的一种聚类算法…
PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨平台的机器学习应用了. 训练模型 首先在spark MLlib中使用mllib包下的逻辑回归训练模型: import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS…
1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向DataFrame编程的. 2:Spark ML与Spark MLLIB中矩阵.向量定义区别? 这两个类库中的矩阵与向量对比可以发现几乎都是一样的,就是为了以后维护Spark ML方便. 3:Spark ML中稀疏向量与稠密向量区别? 稠密向量存储:底层存储使用完成的Double Array存储. 稀…
使用Spark MLlib进行情感分析             使用Spark MLlib进行情感分析 一.实验说明 在当今这个互联网时代,人们对于各种事情的舆论观点都散布在各种社交网络平台或新闻提要中.我们可以在移动设备或是个人PC上轻松地发布自己的观点.对于这种网上海量分布地数据,我们可以利用文本分析来挖掘各种观点.如下图中,CognoviLabs利用Twitter上人们发布对于美国大选两个候选人的推特,进行情感分析的结果.从这张图我们也可以直观地感受到民意所向(此图发表日期为10月10日,…
不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,....进行标记,即我们程序开发者可以根据自己业务需要对数据进行标记. 向量标签和向量是一起的,简单来说,可以理解为一个向量对应的一个特殊值,这个值的具体内容可以由用户指定,比如你开发了一个算法A,这个算法对每个向量处理之后会得出一个特殊的标记值p,你就可以把p作为向量标签.同样的,更为直观的话,你可以把…
参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/special/opencourse/machinelearning.html(已经被翻译了) 所有文中示例见:http://spark.apache.org/docs/latest/mllib-statistics.html 统计工具(1)摘要统计我们通过统计中可用的colStats函数提供RDD…
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Learning),相信很多计算机从业者都会对这个技术方向感到兴奋.然而学习并使用机器学习算法来处理数据却是一项复杂的工作,需要充足的知识储备,如概率论,数理统计,数值逼近,最优化理论等.机器学习旨在使计算机具有人类一样的学习能力和模仿能力,这也是实现人工智能的核心思想和方法.传统的机器学习算法,由于技术和…