bzoj P3309 DZY Loves Math——solution】的更多相关文章

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求: $$\sum_{i=1}^{i<=a}\sum_{j=1}^{j<=b}f(gcd(i,j))$$ bzojP3309 http://www.lydsy.com/JudgeOnline/problem.php?id=3309 化式子: $$\sum_{i=1}^{i<=a}\sum_{j=1}^{j<=b…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))$ $\quad\quad=\sum_{g=1}^{n}f(g)\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d)\lfloor \frac{n}{gd} \rfloor\lfloo…
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m\) \(\sum_{i=1}^{n}\sum_{j=1}^{m}(\frac{ij}{{\gcd(i,j)}})^{\gcd(i,j)}\) 按套路,提出\(\gcd(i,j)\),枚举的\(i\),\(j\)都除\(g\) \(\sum_{g=1}^ng^g\sum_{i=1}^{n/g}\su…
3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status][Discuss] Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1.…
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小,考虑写成前缀和的形式,计算\(S(n,m)=\sum_{i=1}^m \varphi(in)\) 一开始想出 \[ n= \prod_i p_i,\ \varphi(in) = \varphi(i) \cdot \varphi(\frac{n}{d})\cdot d,\ d=(n,i) \] 比较…
DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Discuss] Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b).…
3462: DZY Loves Math II Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 103[Submit][Status][Discuss] Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Input 30 3 9 29 1000000000000000000 Samp…
给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sample Input 3 6 10 15 Sample Output 1595 Hint 1<=n<=10^5,1<=ai<=10^7.共3组数据. 题目大意 (题目过于简洁,完全不需要大意) 题目虽然很简洁,但是处处挖着坑等你跳. 原计划两个小时把今天讲的例题A完,实际上两个小时都被这道题…
Description 给定n,m,求 模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅一行答案. Sample Input 100000 1000000000 Sample Output 857275582 数据规模: 1<=n<=10^5,1<=m<=10^9,本题共4组数据. Solution 这题还真是要一点函数基础 设 \(S(n,m)=\sum_{i=1}^m\varphi(in)\) ,所以答案就是 \(\sum_{i=1}^nS(i,m)…
Description 给定n,m,求 模10^9+7的值. Solution 设 \(S(n,m)\) 表示 \(\sum_{i=1}^{m}\phi(n*i)\) \(Ans=\sum_{i=1}^{n}S(i,m)\) \(S(n,m)=\sum_{i=1}^{m}\phi(n*i)\) 如果 \(\mu(n)!=0\) 则有 \(\sum_{i=1}^{m}\phi(\frac{n}{gcd(i,n)})*\phi(i)*gcd(i,n)\) (因为要保证除完\(gcd\)之后,两数不含…
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D} f(d)\mu(\frac{D}{d}) \frac{n}{D} \frac{m}{D} \] 这次函数是\(g = (f*\mu )\),\(f\)显然不是积性函数,但我们照样可以用线性筛 具体做法我晚上回家再补吧草稿纸忘带了... 补: \(g(p^a)=p-(p-1)\) 因为卷了\(\…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)^{gcd(i,j)}\\&=\sum_{g=1}^{min(n,m)}\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{m}{g}}g^gi^gj^g[gcd(i,j)==1]\\&=\sum_{g…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3512 题解: $$求ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\phi(ij)\quad N\leq 10^5\;M\leq 10^9$$ 杜教筛 因为N比较小,所以从这里入手: 设$sum(n,M)=\sum_{i=1}^{M}\phi(ni)$ 则答案为$ANS=\sum_{n=1}^{N}sum(n,M)$ 考虑如何求$sum(n,M)$ 首先按照唯一分解定理,…
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划. 然后发现有时候许多情况是多余的.因为一整个$S$只能由一些相同的$p$组合而成. 所以这些部分可以用组合数计算,剩下的部分可以用背包处理出来. 需要滚动数组,而且需要前缀和转移. #include <cmath> #include <cstdio> #include <cst…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3481 推推式子发现:令Q=gcd(P,Q),ans=Σ(d|Q) d*phi(P/d).把 d 质因数分解,设 t 为 Q 的指数, w 为 P 的指数,ans变成每个质数的 Σ(i=0~t) p^i * phi( p^(w-i) ) 连乘. 分解质因数用 Pollar Rho . 注意 Q=0 就是 Q=P,要特判!而且不要以为答案变成  (!x || !y) 了! d从0到P-1 就是…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然后 f( ) 还不能一个就花 log 的时间,所以要分析性质. 设 n 一共 m 个质因数,其中最大的指数是 t . 已有 Σ(d|n) f(d)*u(n/d) ,如果 u( ) 的部分含有指数>=2的质因子,就无贡献:所以 u( ) 里每种质因数选1个或0个,一共 2^m 种. 如果 n 里有一个…
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details/42122413 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3481 推式子:xy % P = Q 的个数 由于 0 <= x,y < P,所以对于一个固定的 x,如果 (x,P) | Q,则有 (x,P) 个解: 所以个数为 ∑(0 <= x < P ) (x,P) * [ (x,P) | Q ]  ( [...] 表示 ... 为真则为1,否则为0) = ∑( d|P, d|Q ) d * φ( P/d ) 令 Q = (P,Q),则…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: 在预处理的筛中也犯了愚蠢的错误...总之全仰仗 Narh 提点了... 所以具体题解就看这里咯:https://www.cnblogs.com/Narh/p/9740786.html 代码如下: #include<iostream> #include<cstdio> #include…
参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk)=\phi(k)\sum_{d|gcd(n,k)}\phi(\frac{n}{d}) \)然后看n的范围比较友好就先不去管它,先看后面的: \[ if |\mu(i)|==1 \] \[ \sum_{k=1}^{i}\sum_{d|i,d|k}\phi(\frac{n}{d})\phi(k) \]…
推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #include <bits/stdc++.h> #define ll long long #define N 500006 #define mod 1000000007 #define setIO(s) freopen(s".in","r",stdin) us…
有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; int cnt; int vis[N],prime[N],g[N],mu[N],nump[N],minp[N],qp[N]; void Initialize()…
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd(i, j)) \] \(T\le 10000, 1 \le a,b \le 10^7\) 题解 \[ \begin{aligned} ans &= \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd(i, j)) \\ &= \sum_{d = 1}^{\min…
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample In…
3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description 给定正整数n,m.求 Input 一行两个整数n,m. Output 一个整数,为答案模1000000007后的值. Sample Input 5 4 Sample Output 424 HINT 数据规模: 1<=n,m<=500000,共有3组数据. Source By Jcvb [分析]…
3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sample Input 3 6 10 15 Sample Output 1595 HINT 1<=n<=1…
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\[\sum_{i=1}^{min(n,m)}h(i) \cdot \left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor\] 那个 \(*\) 就是狄利克雷卷积,虽然说我也不知道是不是这么写.…
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^n[gcd(i,j)=d](\frac{ij}{d})^d\\ &=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)=1]i^dj^d\\ &=\sum_{d=1}^nd^d\sum_{i=1}^{n/d}\sum_{…
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\le 10^9\). 题解 这个数据范围很有意思. \(n\)的值足够小,所以我们可以直接暴力枚举\(n\). 那么所求: \[S(n,m)=\sum_{i=1}^m\varphi(ni)\] 考虑如何将\(\varphi\)给拆开,因为\(\varphi\)只有每个质因子第一次出现的时候才会特殊计算…
Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上有\(N\)座祭坛,又有\(M\)条膴蠁边. 时而Dzy狂WA而怒发冲冠,神力外溢,遂有\(K\)条膴蠁边灰飞烟灭. 而后俟其日A50题则又令其复原.(可视为立即复原) 然若有祭坛无法相互到达,Dzy之神力便会大减,于是欲知其是否连通. Input 第一行\(N,M\). 接下来\(M\)行\(x,…