二叉查找树C语言实现】的更多相关文章

二叉查找树C语言实现 1.      二叉查找树的定义: 左子树不为空的时候,左子树的结点值小于根节点,右子树不为空时,右子树的结点值大于根节点,左右子树分别为二叉查找树 2.      二叉查找树的最左边的结点即为最小值,要查找最小值,仅仅需遍历左子树的结点直到为空为止,同理,最右边的结点结尾最大值,要查找最大值,仅仅需遍历右子树的结点直到为空为止.二叉查找树的插入查找和删除都是通过递归的方式来实现的,删除一个结点的时候,先找到这个结点S,然后并非真正的删除这个结点S,而是在其右子树找到后继结…
数据结构:二叉查找树(C语言实现) ►写在前面 关于二叉树的基础知识,请看我的一篇博客:二叉树的链式存储 说明: 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: 1.若其左子树不空,则左子树上所有结点的值均小于它的根结点的值: 2.若其右子树不空,则右子树上所有结点的值均大于它的根结点的值; 3.其左.右子树也分别为二叉排序树 ►二叉查找树的建立(插入): 说明: 二叉树的创建是二叉树反复插入节点所构造出来的! 若二叉树为空树,则插入元素作为树根节点. 若根结点的键值等于key,则插入失…
首先给出此ADT的声明: struct TreeNode; typedef struct TreeNode *Position; typedef struct TreeNode *SearchTree; SearchTree MakeEmpty(SearchTree T); Position Find(ElementType X, SearchTree T); Position FindMax(SearchTree T); Position FindMin(SearchTree T); Sear…
什么是二叉查找树? 二叉查找树又叫二叉排序树,缩写为BST,全称Binary Sort Tree或者Binary Search Tree. 以下定义来自百度百科: 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: 若左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若右子树不空,则右子树上所有节点的值均大于它的根节点的值: 左.右子树也分别为二叉排序树: 没有键值相等的节点. 二叉查找树C语言实现 二叉查找树是将数值比当前节点数值大的优先放到左子树,数值被当前节点大的放倒右子树:…
概要 本章先对二叉树的相关理论知识进行介绍,然后给出C语言的详细实现.关于二叉树的学习,需要说明的是:它并不难,不仅不难,而且它非常简单.初次接触树的时候,我也觉得它似乎很难:而之所产生这种感觉主要是由于二叉树有一大堆陌生的概念.性质等内容.而当我真正的实现了二叉树再回过头来看它的相关概念和性质的时候,觉得原来它是如此的简单!因此,建议在学习二叉树的时候:先对二叉树基本的概念.性质有个基本了解,遇到难懂的知识点,可以画图来帮助理解:在有个基本的概念之后,再亲自动手实现二叉查找树(这一点至关重要!…
在上一篇博文中我们提到了,如果对普通二叉查找树进行随机的插入.删除,很可能导致树的严重不平衡 所以这一次,我们就来介绍一种最老的.可以实现左右子树"平衡效果"的树(或者说算法),即AVL树.其名字与其发明者有关,这种数据结构的发明者为Adelson-Velskii和Landis,所以这种树或者说这种算法就叫AVL树. 那么,AVL树如何实现"平衡"呢? 首先我们来想一想,除了肉眼观察外,如何看出一棵树的"平衡程度"?我们知道任一结点都有两个属性:…
接着上次的话题.这次我们要讨论,二叉查找树的中序遍历和后序遍历(递归和非递归),另外还有先序遍历(非递归) 1.中序遍历(递归) static void __in_order(struct bnode_info *bnode, void (*todo)(struct bnode_info *bnode)) { if (bnode != NULL) { __in_order(bnode->lchild, todo); todo(bnode); __in_order(bnode->rchild,…
什么是二叉查找树? 二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 任意节点的左.右子树也分别为二叉查找树: 没有键值相等的节点(no duplicate nodes). 好的,我们来定义一个结构体, st…
二叉查找树 二叉查找树(BST:Binary Search Tree)是一种特殊的二叉树,它改善了二叉树节点查找的效率.二叉查找树有以下性质: (1)若左子树不空,则左子树上所有节点的值均小于它的根节点的值 (2)若右子树不空,则右子树上所有节点的值均大于它的根节点的值 (3)左.右子树也分别为二叉排序树 (4)没有键值相等的节点 二叉查找树节点的定义: typedef struct BSTreeNode { int data; struct BSTreeNode *left;//左子树 str…
二叉搜索树(Binary Search Tree),又名二叉查找树.二叉排序树,是一种简单的二叉树.它的特点是每一个结点的左(右)子树各结点的元素一定小于(大于)该结点的元素.将该树用于查找时,由于二叉树的性质,查找操作的时间复杂度可以由线性降低到O(logN). 当然,这一复杂度只是描述了平均的情况,事实上,具体到每一棵二叉搜索树,查找操作的复杂度与树本身的结构有关.如果二叉树的结点全部偏向一个方向,那么与线性查找将毫无区别.这就牵扯到二叉树的平衡问题,暂时不做考虑. 下面给出二叉搜索树的实现…