数据结构之Huffman树与最优二叉树】的更多相关文章

最近在翻炒一些关于树的知识,发现一个比较有意思的二叉树,huffman树,对应到离散数学中的一种名为最优二叉树的路径结构,而Huffman的主要作用,最终可以归结到一种名为huffman编码的编码方式,使用huffman编码方式,我们可以以平均长度最短的码字来记录一串信息,且每个信息分子的编码唯一,独立.从而最终合成编码所对应的信息唯一,无歧义. huffman树的创建时基于每个信息分子都拥有其权重,权重越大,越靠近树根,即路径越短, 下面我们我们来以一个huffman树的例子为例:简单引入一下…
树的路径长度是从树根到每一个结点的路径长度(经过的边数)之和. n个结点的一般二叉树,为完全二叉树时取最小路径长度PL=0+1+1+2+2+2+2+… 带权路径长度=根结点到任意结点的路径长度*该结点的权.树的带权路径长度是所有叶结点的带权路径长度和. 带权路径长度WPL最小的扩充二叉树则不一定是完全二叉树,而是权值大的外结点离根结点最近的扩充二叉树. 构造Huffman树需要使用最小堆,组织森林并从中选出根结点权值最小的两棵树,组成新结点(权值等于两棵树根结点权值之和). 假如构造的不是扩充二…
OK,昨天我们对huffman数的基本知识,以及huffman树的创建做了一些简介,http://www.cnblogs.com/Frank-C/p/5017430.html 今天接着聊: huffman树创建完成之后,我们如何去得到huffman编码呢? 图12.4_1 huffman树形结构 图12.4_2  huffman存储结构(数组) 首先,以上面的树为例,我们必须明白几个要点: 1:从什么地方开始访问这颗树:根节点 , index 2n-1 = 15 2:访问的规则:向左为0  向右…
[转载]只为让价值共享,如有侵权敬请见谅! 一.哈夫曼树的概念和定义 什么是哈夫曼树? 让我们先举一个例子. 判定树:         在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设计直接影响着程序的执行效率.例如,编制一个程序,将百分制转换成五个等级输出.大家可能认为这个程序很简单,并且很快就可以用下列形式编写出来:   if(score<60) cout<<"Bad"<<endl; else if(score<70) cout&…
参照书上写的Huffman树的代码 结构用的是线性存储的结构 不是二叉链表 里面要用到查找最小和第二小 理论上锦标赛法比较好 但是实现好麻烦啊 考虑到数据量不是很大 就直接用比较笨的先找最小 去掉最小再找第二小的方法了. #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct{ unsigned int weight; unsigned int parent, lchild, r…
6.5 Huffman 树 Huffman 树又称最优树,可以用来构造最优编码,用于信息传输.数据压缩等方面,是一类有着广泛应用的二叉树. 6.5.1 二叉编码树 在计算机系统中,符号数据在处理之前首先需要对符号进行二进制编码.例如,在计算机中使用的英文字符的 ASCII 编码就是 8 位二进制编码,由于 ASCII 码使用固定长度的二进制位表示字符,因此 ASCII 码是一种定长编码.为了缩短数据编码长度,可以采用不定长编码.其基本思想是:给使用频度较高的字符编较短的编码,这是数据压缩技术的最…
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将追究法律责任!原文链接:http://www.cnblogs.com/jiangzhengjun/p/4289610.html 哈夫曼树又称最优二叉树,是一种带权路径长最短的树.树的路径长度是从树根到每一个叶子之间的路径长度之和.节点的带树路径长度为从该节点到树根之间的路径长度与该节点权(比如字符在…
在一般的数据结构的书中,树的那章后面,著者一般都会介绍一下哈夫曼(HUFFMAN) 树和哈夫曼编码.哈夫曼编码是哈夫曼树的一个应用.哈夫曼编码应用广泛,如 JPEG中就应用了哈夫曼编码. 首先介绍什么是哈夫曼树.哈夫曼树又称最优二叉树, 是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点 的权值乘上其到根结点的 路径长度(若根结点为0层,叶结点到根结点的路径长度 为叶结点的层数).树的带权路径长度记为WPL= (W1*L1+W2*L2+W3*L3+...+Wn*Ln) ,…
哈夫曼树又称为最优二叉树,哈夫曼树的一个最主要的应用就是哈夫曼编码,本文通过简单的问题举例阐释哈夫曼编码的由来,并用哈夫曼树的方法构造哈夫曼编码,最终解决问题来更好的认识哈夫曼树的应用--哈夫曼编码. 一.引子 在学习中我们经常遇到将各科成绩改为优秀.良好.中等.及格和不及格.那么根据分级原理,代码表示为: ) b = "不及格“; ) b = "及格"; ) b = "中等"; ) b = "良好"; ) b = "优秀&q…
哈夫曼树介绍 哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数).树的带权路径长度记为WPL=(W1*L1+W2*L2+W3*L3+...+ Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n).可以证明哈夫曼树的WPL是最小的.     利用哈夫曼编码进行通信可以大大提高信道利用率…