初步掌握Yarn的架构及原理(转)】的更多相关文章

1.YARN 是什么? 从业界使用分布式系统的变化趋势和 hadoop 框架的长远发展来看,MapReduce的 JobTracker/TaskTracker 机制需要大规模的调整来修复它在可扩展性,内存消耗,线程模型,可靠性和性能上的缺陷.在过去的几年中,hadoop 开发团队做了一些 bug 的修复,但是这些修复的成本越来越高,这表明对原框架做出改变的难度越来越大.为从根本上解决旧MapReduce框架的性能瓶颈,促进 Hadoop 框架的更长远发展,从 0.23.0 版本开始,Hadoop…
1.YARN 是什么? 从业界使用分布式系统的变化趋势和 hadoop 框架的长远发展来看,MapReduce的 JobTracker/TaskTracker 机制需要大规模的调整来修复它在可扩展性,内存消耗,线程模型,可靠性和性能上的缺陷.在过去的几年中,hadoop 开发团队做了一些 bug 的修复,但是这些修复的成本越来越高,这表明对原框架做出改变的难度越来越大.为从根本上解决旧MapReduce框架的性能瓶颈,促进 Hadoop 框架的更长远发展,从 0.23.0 版本开始,Hadoop…
1. YARN产生背景 MapReduce本身存在着一些问题: 1)JobTracker单点故障问题:如果Hadoop集群的JobTracker挂掉,则整个分布式集群都不能使用了. 2)JobTracker承受的访问压力大,影响系统的扩展性. 3)不支持MapReduce之外的计算框架,比如Storm.Spark.Flink等. 与旧MapReduce相比,YARN采用了一种分层的集群框架,具有以下几种优势. 1)Hadoop2.0提出了HDFSFederation:它让多个NameNode分管…
目录 HDFS 是做什么的 HDFS 从何而来 为什么选择 HDFS 存储数据 HDFS 如何存储数据 HDFS 如何读取文件 HDFS 如何写入文件 HDFS 副本存放策略 Hadoop2.x新特性 1.HDFS 是做什么的 HDFS(Hadoop Distributed File System)是Hadoop项目的核心子项目,是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上.它所具有的高容错.高可靠性.高可扩展性.高获得性.高吞…
目录 一.什么是yarn 二.yarn的基本架构和角色 三.yarn的工作机制 四.任务提交流程 五.资源调度器 FIFO 容量调度器 公平调度器 六.容量调度器多队列提交案例实操 1.案例:配置default.hive多队列 ①增加队列,添加队列的属性配置 ②分发配置文件到集群,重启Yarn ③测试,向default ,hive队列分别提交任务 2.配置Hive的默认提交队列 一.什么是yarn ​ Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,…
目录 1.MapReduce定义 2.MapReduce来源 3.MapReduce特点 4.MapReduce实例 5.MapReduce编程模型 6.MapReduce 内部逻辑 7.MapReduce架构 8.MapReduce框架的容错性 9.MapReduce资源组织方式 1.MapReduce 定义 Hadoop 中的 MapReduce是一个使用简单的软件框架,基于它写出来的应用程序能够运行在由上千个机器组成的大型集群上,并以一种可靠容错并行处理TB级别的数据集 2.MapRedu…
资源管理与调度系统-YARN的基本架构与原理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 为了能够对集群中的资源进行统一管理和调度,Hadoop2.0引入了数据操作系统YARN.YARN的引入大大提高了集群的资源利用率,并降低了集群管理成本. 首先,YARN能够将资源按需分配给各个应用程序,这大大提高了资源利用率,其次,YARN允许各类短作业和长服务混合部署在一个集群中.并提供了容错,资源隔离及负载均衡等方面的支持,这大大简化了作业和服务的部署和管理成本. 一.YARN产生…
原文链接:HDFS架构及原理 引言 进入大数据时代,数据集的大小已经超过一台独立物理计算机的存储能力,我们需要对数据进行分区(partition)并存储到若干台单独的计算机上,也就出现了管理网络中跨多台计算机存储的文件系统:分布式文件系统(distributed filesystem).基于hadoop分布式文件系统HDFS(Hadoop Distributed Filesystem)具备高容错.高吞吐量等特性,在大数据和AI时代得以广泛应用. HDFS设计 HDFS设计初衷: 低成本:HDFS…
Hadoop 和 Spark 的关系 Spark 运算比 Hadoop 的 MapReduce 框架快的原因是因为 Hadoop 在一次 MapReduce 运算之后,会将数据的运算结果从内存写入到磁盘中,第二次 Mapredue 运算时在从磁盘中读取数据,所以其瓶颈在2次运算间的多余 IO 消耗. Spark 则是将数据一直缓存在内存中,直到计算得到最后的结果,再将结果写入到磁盘,所以多次运算的情况下, Spark 是比较快的. 其优化了迭代式工作负载 Hadoop的局限 Spark的改进 抽…
1.概述:最近,有一些工程师问我有关HBase的基本架构的问题,其实这个问题仅仅说架构是非常简单,但是需要理解.在这里,我觉得可以用HDFS的架构作为借鉴.(其实像Hadoop生态系统中的大部分组建的架构原理是类似,不信你往下看) 2.介绍架构 (1)HDFS例子 在这里我以我比较熟悉的HDFS分布式文件系统作为一个例子来简单说明一下.首先我对HDFS的架构做一个简单的说明: HDFS分布式文件系统主要三个组建:NameNode和DataNode以及SecondaryNameNode.Namen…