主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量,从而达到降维的目的.在原始数据“预处理”阶段通常要先对它们采用PCA的方法进行降维.本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但并非随意投影,而是需要遵循一个规则:希望降维后的数据不能失真,也就是说被PCA降掉的那些维度只能是噪声或是冗余的数据. 噪声可以理解为样本数据各维度之间的相关性干扰,冗余可以理解为没有的维度(何为没用?我们PCA处理的…
1.数学推导 根据上讲的思想,我们可以用下图来进行数学上的推导. 2.PCA的步骤 1)对原始数据进行标准化处理:对该指标变量进行标准化, 2)计算相关系数矩阵(协方差矩阵) 3)计算相关系数矩阵的特征值和特征向量,得到新的指标标量. 4)计算特征值的信息贡献率和累积贡献率,按一定规则选择主成分 5)以主成分的贡献率为权重,构建主成分综合评价模型,计算综合评价值和排名 3.应用实例——我国各地区普通高等教育发展综合评价 案例背景不再详述,在此我们选取10个指标来评价30个省市他们的普通高等教育发…
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA是一个和LDA非常相关的算法,从推导.求解.到算法最终的结果,都有着相当的相似. 本次的内容主要是以推导数学公式为主,都是从算法的物理意义出发,然后一步一步最终推导到最终的式子,LDA和PCA最终的表现都是解一个矩阵特征值的问题,但是理解了如何推导,才能更深刻的理解其中的含义.本次内容要求读者有一些…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…
转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现>和季海波老师的<矩阵代数>两门课之后,颇有体会.最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会. 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加…
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看.在本文中,将会很详细的解答这些问题:PCA.SVD.特征值.奇异值.特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不…
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主成分分析目标函数优化 3.3 基于最大可分性推导PCA 3.4 核主成分分析(KPCA) 四.主成分分析流程 4.1 输入 4.2 输出 4.3 流程 五.主成分分析优缺点 5.1 优点 5.2 缺点 六.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工…
1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量.更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性.如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论. 因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损…
一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便.如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的.盲目减少指标会损失很多信息,容易产生错误的结论. 因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指…
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到…