目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训练误差最小化)的基础上,尽可能采用简单的模型,以提高模型泛化预测精度. 正则化 为了避免过拟合,最常用的一种方法是使用正则化,例如L1和L2正则化. 所谓的正则化,就是在原来损失函数的基础上,加了一些正则化项,或者叫做模型复杂度惩罚项. L2正则化 L2正则化即:\(L=E_{in}+\lambda…