Series的idxmax和argmax】的更多相关文章

转载至:https://www.cnblogs.com/liulangmao/p/9211537.html pandas Series 的 argmax 方法和 idxmax 方法用于获取 Series 的最大值的索引值: 举个栗子: 有一个pandas Series,它的索引是国家名,数据是就业率,要找出就业率最高的国家: import pandas as pd countries = [ 'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Arge…
pandas Series 的 argmax 方法和 idxmax 方法用于获取 Series 的最大值的索引值: 举个栗子: 有一个pandas Series,它的索引是国家名,数据是就业率,要找出就业率最高的国家: import pandas as pd countries = [ 'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan…
一些说明.参阅 https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/1_command_line_reinforcement_learning/treasure_on_right.py https://github.com/simoninithomas/Deep_reinforcement_learning_Course/blob/master/Q%20learning…
引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我…
返回最大值的索引…
pandas模块常用函数解析之Series 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网址http://localhost:8888/ 一.导入模块 import numpy as np import pandas as pd from pandas import Series,DataFrame 二.Series Series是一种类似于一维数组的对象,由下面两个部分组成: values:一组…
本課主題 Numpy 的介绍和操作实战 Series 的介绍和操作实战 DataFrame 的介绍和操作实战 Numpy 的介绍和操作实战 numpy 是 Python 在数据计算领域里很常用的模块 import numpy as np np.array([11,22,33]) #接受一个列表数据 创建 numpy array >>> import numpy as np >>> mylist = [1,2,3] >>> x = np.array(my…
这个错误真的tmd伤脑筋.我用idxmax函数去求series类型的最大值的索引,结果明明是下面这种数据, 无论我如何pint他的shape,type,他怎么看都是一个满足idxmax函数要求的参数类型:标准的Series类型,且每个元素都是浮点数, 但是: 然鹅,当我最后在调试中看到了一个不起眼的地方 这个貌似元素为浮点数的Series变量,啥时候元素类型成了object,我不得而知,也不想知道,我只知道,我需要加上一行美丽的代码 results_table['Mean_recall_scor…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…