自己建立一个工程,希望调用libcaffe.lib ,各种配置好,也能成功编译,但是运行就会遇到报错 F0519 14:54:12.494139 14504 layer_factory.hpp:77] Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type: Input (known types: Input ) 各种跟踪调试都找不到原因,相同的代码在microsoft版本的caffe里使用就没有问题,自己新建一…
在Windows7下调用vs2013生成的Caffe静态库时经常会提示Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type的错误,如下图: 这里参考网上资料汇总了几种解决方法: 1.      不使用Caffe的静态库,直接将Caffe的source加入到main工程中: 2.      将Caffe编译成动态库: 3.      使用Caffe静态库,新建一个caffe_layers_registry.hpp头…
运行make之后出现如下错误: /usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: 'type name' declared as function returning an array  escape  ^  /usr/include/boost/property_tree/detail/json_parser_read.hpp:257:264: error: 'type name' decl…
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分都是基于Linux下进行的部署,但是Linux只是跑在虚拟机中,只为了开发ARM-Linux的人,你不会想着去在虚拟机里配置Caffe的.所以,迫不得已必须在Windows上部署,于是从BVLC下载,试着用CMAKE生成本地的VS2010工程,当然之前已经部署过CUDA7.5 toolkit了,但是…
这一段时间把caffe在windows环境下编译了一下,tool里面的cpp全部编译成了exe.再用的时候有两个问题让我头疼了好长时间! 第一个问题 "db_lmdb.hpp:14] Check failed: mdb_status == 0 (112 vs. 0) 磁盘空间不足." 这问题是由于lmdb在windows下无法使用lmdb的库,所以要改成leveldb. 但是要注意,由于backend默认的是lmdb,所以你每一次用到生成的图片leveldb数据的时候, 都要把&quo…
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要的是,它将深度学习的每一个细节都原原本本地展现出来,大大降低了人们学习研究和开发的难度. 一.从Caffe的开发中了解到的用户需求:深度学习的框架总会不断改变,Caffe也会有被新框架代替的一天.但是在开发Caffe的过程中,贾扬清发现大家喜欢的框架其实有着很多相似的地方,这些闪光点拥有很长的生命周…
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置成功后的第一次训练过程记录<二> 标签:[神经网络与深度学习] [CUDA开发] [VS开发] 紧着上一篇,我在windows上备份了三个版本的Caffe库以及visual studio 13的编译工程,主要当时是一步一步来的,想着先是only cpu,然后是支持cuda,最后是并入cuDNN.当我意识到程序要支持在没有GPU的设备上运行时,需要有不同的选择.这里主要记录关于三种不同的配置…
[源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 目录 [源码解析] 深度学习分布式训练框架 Horovod --- (1) 基础知识 0x00 摘要 0x01 分布式并行训练 1.1 分布式并行训练的必要 1.2 分布式训练 1.3 训练并行机制 1.3.1 三种机制 1.3.2 如何使用 1.4 数据并行训练 0x02 通信 & 架构 2.1 方法和架构 2.2 异步 vs 同步 0x03 具体架构 3.1 MapReduce 3.2 参数服务器 (PS) 3.…
[源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 目录 [源码解析] 深度学习分布式训练框架 horovod (7) --- DistributedOptimizer 0x00 摘要 0x01 背景概念 1.1 深度学习框架 1.2 Tensorflow Optimizer 0x02 总体架构 2.1 总体思路 3.2 总体调用关系 0x04 TensorFlow 1.x 4.1 _DistributedOptimizer 4.2 c…
[源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Worker生命周期 目录 [源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Worker生命周期 0x00 摘要 0x01 Worker 是什么 1.1 角色 1.2 职责 1.3 组网机制 1.3.1 通信环 1.3.2 弹性构建 1.3.2.1 Driver 监控 1.3.2.2 Driver 重新构建 0x02 总体生命流程 0x03 配置过程 0x04 启动过程 4.1 总…