Hive调优参数配置】的更多相关文章

Hive进行大数据处理的过程中经常遇到一个任务跑几个小时或者内存溢出等问题,平时会任务执行的遇到的问题 进行参数的调整配置,收集整理的配置参考如下: set dfs.namenode.handler.count=20; set mapred.task.timeout=36000000; set hive.cbo.enable=true; set hive.compute.query.using.stats=true; set hive.stats.fetch.column.stats=true;…
临时设置 最大虚拟内存 [root@Sonnarqube-dev ~]# sysctl -w vm.max_map_count=262144 执行结果 vm.max_map_count = 262144 打开文件数 [root@Sonnarqube-dev ~]# sysctl -w fs.file-max=65536 fs.file-max = 65536 打开文件数 [root@Sonnarqube-dev ~]# ulimit -n 65536 最大进程数 [root@Sonnarqube…
在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map task中间结果写本地磁盘路径,默…
Hive存储格式选择 和Hive 相关优化: 压缩参考 Hive支持的存储数的格式主要有:TEXTFILE .SEQUENCEFILE.ORC.PARQUET. 文件存储格式 列式存储和行式存储 行存储的特点:查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快. 列存储的特点:因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量:每个字段的数据类型一定是相同…
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 案例实操 数据倾斜 Map数 小文件进行合并 复杂文件增加Map数 Reduce数 并行执行 严格模式 JVM重用 推测执行 执行计划(Explain) Fetch抓取 Fetch抓取是指:Hive中对某些情况的查询可以不必使用MapReduce计算 例如:SELECT * FROM employ…
数据的倾斜: 主要就是合理的控制我们的map个数以及reduce个数 第一个问题:maptask的个数怎么定的???与我们文件的block块相关,默认一个block块就是对应一个maptask 第二个问题:reduceTask的个数怎么定的???是我们自己手动设置的,爱设几个设几个,没人管你 第三个问题:是不是maptask的个数越多越好:不一定:有时候有些小文件,都要启动一个maptask,分配资源的时间超过了数据处理的时间 减少mapTask的个数:设置map端的小文件合并:使用combin…
hive 调优(二)参数调优汇总 在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map…
hive 调优(一)coding调优 本人认为hive是很好的工具,目前支持mr,tez,spark执行引擎,有些大公司原来封装的sparksql,开发py脚本,但是目前hive支持spark引擎(不是很稳定,建议Tez先),所以离线还是用hive比较好. 先将工作中总结,以及学习其他人的hive优化总结如下: 一. 表连接优化 这是比较常见的问题 1.  将大表放后头 Hive假定查询中最后的一个表是大表.它会将其它表缓存起来,然后扫描最后那个表. 因此通常需要将小表放前面,或者标记哪张表是大…
前言 Hive是由Facebook 开源用于解决海量结构化日志的数据统计,是基于Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类 SQL查询功能. 在资源有限的情况下,提高作业的查询效率从而达到快速产出数据的想法势在必行.掌握Hive的调优方法能够提升工作效率同时提高任务执行的稳定性.本文会从以下几个方面介绍Hive调优的思路: 设计优化 存储优化 作业优化 1.设计优化 分区表和索引 对表进行合理的管理以及提高查询效率,分区是表的部分列的集合,可以为频繁使用的数据…
本文是针对 Dubbo 协议调用的调优指导,详细说明常用调优参数的作用域及源码. Dubbo调用模型 常用性能调优参数 参数名 作用范围 默认值 说明 备注 threads provider 200 业务处理线程池大小   iothreads provider CPU+1 io线程池大小   queues provider 0 线程池队列大小,当线程池满时,排队等待执行的队列大小, 建议不要设置,当线程程池时应立即失败, 重试其它服务提供机器,而不是排队,除非有特殊需求   connection…