传说中的Markov"不过如此”】的更多相关文章

因为看一篇题为 Passive Measurement of Interference in WiFi Network with Application in Misbehavior Detection的文章,学习了马尔科夫模型.之前一直主观觉得马尔科夫模型太难,看过之后其实不过如此,恰恰相反,这个模型本身还简化了原本复杂的概率网络.<模式识别>对马尔科夫和隐马尔可夫介绍得非常详尽易懂.马尔科夫模型是一个非常useful的工具. 几个重要概念: 马尔可夫假设:在一个随着时间观测到的对象序列中,…
Block Markov coding在一系列block上进行.在除了第一个和最后一个block上,都发送一个新消息.但是,每个block上发送的码字不仅取决于新的信息,也跟之前的一个或多个block上的信息有关.所以,称为Markov encoding.之前blocks上的信息,可以是之前消息提取的信息,也可以是其他用户的合作信息. Non-Markov coding,每个block的码字只取决于现在的消息,相应地,接收机只利用当前block的消息译码. 非规则编码和连续译码首先在中继信道中提…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的随机文本".1 2. 隐马尔科夫过程1 3. 隐马模型基本要素及基本三问题2 4. 维特比算法2 5. 应用 HMM一开始是在信息论中应用的,后来才被应用到自然语言处理还有其他图像识别等各个2 6. 扩展数学之美系列十九 -- 马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)2…
1.基本信息 题目:使用马尔科夫场实现基于超像素的RGB-D图像分割: 作者所属:Ferdowsi University of Mashhad(Iron) 发表:2015 International Symposium on Artificial Intelligence and Signal Processing (AISP) 关键词:微软Kinect传感器:RGB-D图像分割:MRF:法向量 2.摘要 针对问题:能量最小化: 使用场景:室内场景标签问题(分割.分类等): 主要数据:微软Kin…
主讲人 张巍 (新浪微博: @张巍_ISCAS) 软件所-张巍<zh3f@qq.com> 19:01:27 我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模: 例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模: 但这样并不能完全解决问题 :1.高阶马尔科夫模型参数太多:2.数据间的相关性仍然受阶数限制.一个好…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
介绍 崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本文会介绍声称概率模式的系统,用来预测天气的变化 然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象.比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化. 最后,我们会利用已经建立的模型解决一些实际的问题,比如根据一些列海藻的观察记录,分析出这几天…
We have seen that directed graphical models specify a factorization of the joint distribution over a set of variables into a product of local conditional distributions. They also define a set of conditional independence properties that must be satisf…
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This topic doesn’t have much to do with nicer code, but there is probably some overlap in interest. However, some of the topics th…