zollei的心动噪声探索性识别】的更多相关文章

<Exploratory Identification of Cardiac Noise in fMRI Images> 这个方法,最特别的地方在于, 是从静息态的大脑数据中,抽取心动结构数据,然后用于激活态的检测. 这个方法,真心好累赘,还不如利用外部设备进行检测. cca其实是在一件什么事儿呢? 就是,提取出这样的成分,这些成分内部的autocorrelation是最大化maximation的. cca算是一种探索性识别技术. 探索性识别技术,永远需要证明自己的方法的可靠性. 在这里,作者…
关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目研究所. 说白了,就是看你穷的没钱搞研究,就施舍给你.Hinton.Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目. 这个项目结集了不少计算机科学家.生物学家.电气工程师.神经科学家.物理学家.心理学家,加速推动了DL的进程.从这个阵容来看,DL已经…
一 不同色彩空间的转换 OpenCV中有数百种关于在不同色彩空间之间转换的方法.当前,在计算机中有三种常用的色彩空间:灰度,BGR以及HSV(Hue,Saturation,Value). 灰度色彩空间是通过去除色彩信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测. BGR,即蓝-绿-红色彩空间,每一个像素点都由一个三元数组来表示,分别代表蓝.绿.红三种颜色.网页开发者可能熟悉另一个与之相似的色彩空间:RGB,他们只是在颜色顺序上不同. HSV,H(Hue)是色调,S(Satur…
经典数据集CIFAR-10,60000张32x32彩色图像,训练集50000张,测试集10000张.标注10类,每类图片6000张.airplance.automobile.bird.cat.deer.dog.frog.horse.ship.truck.没有任何重叠.CIFAR-100,100类标注.深度学习之父 Geoffrey Hinton和学生Alex Krizhevsky.Vinod Nair收集.图片源于80 million tiny images数据集.State-of-the-ar…
一.TSP问题 旅行商问题,又叫货郎担问题.它是指如下问题:在完全图中寻找一条最短的哈密尔顿回路. 哈密尔顿回路问题:给定一个图,判断图中是否存在哈密尔顿回路. 哈密尔顿回路:寻找一条回路,经过图中所有点且每个点只经过一次. 欧拉回路:寻找一条回路,经过图中所有的边且每条边只经过一次. 判断一个图是否存在欧拉回路只需要判断每个顶点的出度和入度是否相同. 判断一个图是否存在一条哈密尔顿回路是一个NP问题. 旅行商问题和哈密尔顿回路问题最大的区别在于:旅行商研究的图是完全图,必然存在一条哈密尔顿回路…
Python数据挖掘——数据预处理 数据预处理 数据质量 准确性.完整性.一致性.时效性.可信性.可解释性 数据预处理的主要任务 数据清理 数据集成 数据归约 维归约 数值归约 数据变换 规范化 数据离散化 概念分层产生 数据清理(试图填充缺失的值,光滑噪声并识别离群点,纠正数据的不一致) 缺失值 忽略元组 人工填写缺失值 使用一个全局常量填充缺失值 使用属性的中心度量(均值/中位数)填充缺失值 使用与给定元组属于同一类的所有样本的均值/中位数 使用最可能的值 填充缺失值 注:某些情况,缺失值并…
2022年6月,HMS Core机器学习服务面向开发者提供一项全新的开放能力--同声传译,通过AI语音技术减少资源成本,加强沟通交流,旨在帮助开发者制作丰富多样的同声传译应用. HMS Core同声传译涵盖了机器学习服务的语音识别.翻译.语音合成等核心技术,首先把输入的实时语音转换成文字,然后再把文字翻译成另一种语言的文字,最后把翻译后的文字转换成语音播放.同声传译能力能够协助解决多种场景下的跨语言实时交流,支持中英文互译,提供多种音色语音播报,可以广泛应用于领域多样.环境复杂.实时性高的会议.…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…
首先,ica是一种探索性的方法,属于数据驱动的范畴. ica计算量很大,一般都是离线式计算. ica基于的猜想是,世界是加性的.在我们所研究的脑科学中,所采集到的BOLD信号,是由一些源信号所构成,更准确地说,是由这些源信号叠加而成的.也就是说,假设我们以每个体素为研究对象,那么每个体素的BOLD信号在每个时间点的数值,都是由很多个独立的源信号所组成.注意,在这里,我们对于ica的要求就是分离出的源信号是独立的. 那么,源信号来自于哪里呢? 来自于某个体素,来自于某个脑区,来自于分散在大脑皮层各…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…