垃圾收集算法 一般来说,垃圾收集算法分为四类: 标记-清除算法 最基础的算法便是标记-清除算法(Mark-Sweep).算法分为“标记”和“清除”两个阶段:首先标记处需要收集的对象,在标记完成之后,再统一回收所有被标记的对象. 这是最简单的一种算法,但是缺点也是很明显的:一个是效率问题,标记和清除效率都不高.二是空间问题,清除之后会产生大量的空间碎片,导致之后分配大对象找不到足够的连续对象而不得不触发另一次垃圾收集动作.算法执行过程如下图. 复制算法 复制算法(Copying)将可用内存按照容量…
GC可谓是java相较于C++语言,最大的不同点之一. 1.GC回收什么? 上一篇讲了内存的分布. 其中程序计数器栈,虚拟机栈,本地方法栈 3个区域随着线程而生,随着线程而死.这些栈的内存,可以理解为在编译期已经确定. 方法结束,或者线程结束时,内存就自然被回收了. 一个interface的多个实现类,需要的内存可能不一样,一个方法的多个分支需要的内存也不一样,我们只有在程序运行的时候,才知道会创建那些对象,需要多少内存. 这部分分配和回收都是动态的,GC所关注的就是这部分内存. 2.回收的标准…
1.1   垃圾收集器 垃圾收集器是内存回收的具体实现.以下讨论的收集器是基于JDK1.7Update14之后的HotSpot虚拟机.这个虚拟机包含的所有收集器有: 上图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用.虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器.接下来笔者将逐一介绍这些收集器的特性.基本原理和使用场景,并重点分析CMS和G1这两款相对复杂的收集器,了解它们的部分运作细节. 直到现在为止还没有最好的收集器出现,更加没有万能的收…
可回收判定两种算法 引用计数法(Reference Counting):引用为0时可回收. 可达性分析法(Reachability Analysis): 从GCRoots对象到这个对象不可达. GCRoots: 本地变量表引用的对象: 方法区中静态属性引用的对象 方法区中常量引用的对象 Native方法栈引用的对象. 个人理解,即在生命周期内不会变得不可达的对象.   垃圾收集算法 复制算法,一般用于新生代的minor gc,效率较高: 标记-整理算法,用于老年代的full gc,效率较低.  …
在堆里存放着java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前需要知道哪些对象还存活,哪些对象已经死去.那怎么样去判断对象是否存活呢? 一.判断对象是否存活算法 1.引用计数法 实现思路:给对象添加一个引用计数器.每当有一个地方引用它时,计数器加1:引用失效时计数器减1.在任何时刻计数器为0的对象就是不可能再被使用的. 优点:实现简单,效率高. 缺点:很难解决对象之间的相互循环引用. 2.可达性分析算法 实现思路:通过GC Roots的对象作为起始点,从这些节点向下搜索,搜索走过的路径…
垃圾收集器 垃圾收集器是垃圾收集算法的具体实现.Java规范对垃圾收集器的实现没有做任何规定,因此不同的虚拟机提供的垃圾收集器可能有很大差异.HotSpot虚拟机1.7版本使用了多种收集器.如下图. 共有7种作用不不同分代的收集器,其中Serial.ParNew.Parallel Scavenge属于新生代收集器,CMS.Serial Old(MSC) Parallel Old属于老年代收集器,G1可以作用于这两部分.相互连线表示收集器可以搭配使用. Serial (串行)收集器 Serial收…
垃圾收集器 垃圾收集(Garbage Collection,GC),它的任务是解决以下 3 件问题: 哪些内存需要回收? 什么时候回收? 如何回收? 本节补充知识: ① s:Survivor区 新生代(Young Generation):大多数对象在新生代中被创建,其中很多对象的生命周期很短.每次新生代的垃圾回收(又称Minor GC)后只有少量对象存活,所以选用复制算法,只需要少量的复制成本就可以完成回收. 老年代(Old Generation):在新生代中经历了N次垃圾回收后仍然存活的对象,…
虚拟机把类加载阶段中“通过一个类的全限定名来获取描述此类的二进制字节流”这个动作放到虚拟机外部去实现,以便让程序自己决定如何去获取所需要的类.实现这个动作的代码模块称为“类加载器”. 类与类加载器 任意一个类,都需要由加载它的类加载器和这个类本身共同确定其在Java 虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间.这句话可以表达的更通俗一些:比较两个类是否相等,只有在这两个类是同一个类加载器加载的前提下才意义. 这里的“相等”,包括代表类的 Class 对象的equals() 方法…
1. 标记 - 清除算法 先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象.它是最基础的收集算法.其他收集算法都是根据其思路,改进其不足之处. 缺点:1) 标记和清除两个阶段的效率都不高:2)清除后会产一大量不连续的内存碎片 2. 复制算法 将可用内存划分为大小相等的两块,每次只使用其中一块.当一块内存用完了,将还存活的对象复制到另一块,然后将使用过的那块全部清空. 缺点:可使用内存仅为分配的一半,代价太高. 这种算法主要用在新生代.新生代中大多数对象都是朝生夕死的,所以并不需要…
收集器可以大致分为:单线程收集器, 并发收集器和并行收集器. 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态. 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上. 1. Serial 收集器 它是单线程收集器.“单线程”是指它在进行垃圾回收时,会暂停其它所有的线程,直至它收集结束.Serial 收集器对于运行在Client 模式下的虚拟机来说是一个很好的…