目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 编译时常见错误 运行时错误 参考 GPU为RTX2080,系统为更新到最新版本的Win10. 准备工作 安装VS2015,到官网地址older-download下载安装 安装Matlab,笔者安装的是Matlab2017b 安装Anaconda3-4.4.0-Windows-x86_64.exe(…
写在前面 本文叙述了在Ubuntu16.04 Server下安装CUDA8.0,cuDNN6.0以及源码编译安装TensorFlow1.4.0(GPU版)的亲身经历,包括遇到的问题及解决办法,也有一些自己的经验,希望能对读者有所帮助.期间参考了许多前人的文章,后文会一一附上链接,在此先行谢过.在下能力有限,经验不足,请大家多多指教. 关键词:Ubuntu16.04 Server   深度学习环境搭建   安装   显卡驱动   CUDA8.0   cuDNN6.0   Bazel   源码编译 …
目前电脑配置:Ubuntu 16.04 + GTX1080显卡 配置深度学习环境,利用清华源安装一个miniconda环境是非常好的选择.尤其是今天发现conda install -c menpo opencv3 一句命令就可以顺畅的安装上opencv,之前自己装的时候也遇到了很多错误.conda 安装 Tensorflow 和 Pytorch两种框架也是非常方便的,对于不擅长源码编译的我是最佳选择没错了. 所以大致流程就是:安装显卡驱动——安装CUDA 8.0——安装cuDNN——安装mini…
目录 深度学习环境搭建:Tensorflow1.4.0+Ubuntu16.04+Python3.5+Cuda8.0+Cudnn6.0 Reference 硬件说明: 软件准备: 1. 安装Ubuntu16.04 2. 安装显卡驱动 3.安装Cuda8.0 4. 安装Cudnn6.0 5. 清华源安装Anaconda 6. 安装tensorflow 7. 验证您的安装 运行一个简短的 TensorFlow 程序 8. 卸载cudnn5.1升级为cudnn6.0 深度学习环境搭建:Tensorflo…
作为一个AI工程师,对Linux的一些技能的掌握也能从一定层面反应工程师的资深水平. 要求1:基于SSH的远程访问(本篇文章) 能用一台笔记本电脑,远程登陆一台linux服务器 能随时使用笔记本电脑启动训练任务 能熟练的让代码和文件在笔记本电脑与LINUX服务器之间的传输 要求2:Linux系统的文件系统(Linux指令学习) 知道什么是硬盘的挂载 能合理的使用服务器的硬盘空间 不要求,但建议学会如何在LINUX系统上自建逻辑卷(LVM) 要求3:LINUX系统的账户管理 知道root账户与普通…
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:…
工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs.com/orzs/p/10951473.html 需要部署的软件 conda环境 nccl2环境 openmpi环境 horovod环境 1. 创建conda环境 官网下载地址:https://www.anaconda.com/distribution/#download-section 下载合适…
OS System:Ubuntu16.04 GPU Device:GTX1080Ti Softwares:CUDA8.0.Cudnn6.0.TensorFlow(1.4.0).Caffe2(1.0.0) 一.win10下安装Ubuntu16.04(双系统) 1.Linux分区方案 (Lagency+MBR) /boot 512M swap 16GB(本机物理内存为32GB) / 30GB or 35GB /home 余下的(越多越好) (UEFI+GPT) efi 512M swap 16GB(…
关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K 及其以上高级型号 内存:品牌内存,总容量32G以上,根据主板组成4通道或8通道 SSD: 品牌固态硬盘,容量256G以上 显卡:NVIDIA GTX TITAN(XP) NVIDIA GTX 1080ti.NVIDIA GTX TITAN.NVIDIA GTX 1080.NVIDIA GTX 107…
去年底入手一台联想Y7000P,配置了Nvidia GeForce GTX 1660 Ti GPU,GPU内存6G,但是因为有GPU服务器,所以一直没有在这台笔记本上跑过模型,如今经过一番折腾,终于在此笔记本上搭建好了环境,并成功使用GPU训练了一些模型,本篇记录了环境搭建的过程. 检查你的GPU 首先确保你的电脑有Nvidia的GPU,并且支持CUDA,可以参考这个网址. 安装vs2017 Visual Studio 2017 Community下载地址 安装选项:勾选"C++的桌面开发&qu…