非线性优化-SLAM14CP6】的更多相关文章

1.线性最小二乘问题 2.非线性最小二乘问题 因为它非线性,所以df/dx有时候不好求,那么可以采用迭代法(有极值的话,那么它收敛,一步步逼近): 这样求导问题就变成了递归逼近问题,那么增量△xk如何确定? 这里介绍三种方法: (1)一阶和二阶梯度法 将目标函数在x附近进行泰勒展开: (2)高斯牛顿法 将f(x)一阶展开:(1) 这里J(x)为f(x)关于x的导数,实际上是一个m×n的矩阵,也是一个雅克比矩阵.现在要求下降矢量△x,使得||f(x+△x)|| 达到最小. 为求△ x,我们需要解一…
首先根据最大后验估计(Maximum a posteriori estimation,MAP)构建非线性优化的目标函数. 初始化过程通过线性求解直接会给出一个状态的初值,而非线性优化的过程关键在于求解增量方程,并不断迭代到最优点,需要在初值以及后续的迭代点附近线性化(泰勒展开保留一阶后平方构建高斯牛顿梯度下降的增量方程): 在初值x附近泰勒展开 $f(x+\Delta x) = f(x) + J\Delta x$ $costFunction = [f(x+\Delta x)]^{2}$ 最小化c…
Ceres Solver: 高效的非线性优化库(二)实战篇 接上篇: Ceres Solver: 高效的非线性优化库(一) 如何求导 Ceres Solver提供了一种自动求导的方案,上一篇我们已经看到. 但有些情况,不能使用自动求导方案.另外两种方案:解析求导和数值求导. 1. 解析求导 有些情况无法定义模板代价函数.比如残差函数是库函数,你无法知道.此时我们可以构建一个NumericDiffCostFunction,例如\[f(x)=10-x\].上面的例子变成 struct Numeric…
Ceres Solver: 高效的非线性优化库(一) 注:本文基于Ceres官方文档,大部分由英文翻译而来.可作为非官方参考文档. 简介 Ceres,原意是谷神星,是发现不久的一颗轨道在木星和火星之间"矮行星"(冥王星降级之后,同为矮行星).Google开源了Ceres Solver库,是一个解很多非线性最优化问题的高效.方便的工具. 官方网站:http://ceres-solver.org/ 源码地址:https://github.com/ceres-solver/ceres-sol…
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其运用在有约束条件下 2.1 投影法 2.1.1 梯度下降法 to 投影梯度法 2.1.2 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来…
总结一下SLAM中关于非线性优化的知识. 先列出参考: http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/ http://blog.csdn.net/dsbatigol/article/details/12448627 http://www.cnblogs.com/rongyilin/archive/2012/12/21/2827898.html <视觉SLAM十四讲>. 1. 雅克比矩…
C++ 应用程序性能优化 eryar@163.com 1. Introduction 对于几何造型内核OpenCASCADE,由于会涉及到大量的数值算法,如矩阵相关计算,微积分,Newton迭代法解方程,以及非线性优化的一些算法,如BFGS,FRPR,PSO等等用于多元函数的极值求解,所以这些数值算法的性能直接影响系统的性能.软件的性能优化是计算机软件开发过程中需要一直关注的重要因素,因此有必要学习下C++应用程序性能优化的方法. 在网上寻找相关资料时,发现这方面的资料也很少,最后发现一本由电子…
对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型.Maple软件系统在教学应用中越来越受到人们的接受和认可. Maple 作为教育工具,已被学校老师应用在各种理工科课程中.与其他工具相比,Maple具有以下显著的特征: Maple无缝集成数值和符号计算,可以执行任意精确度的数值计算,即任意位数的小数和任意大的整数运算.包含各个数学分支的函数包,进行…
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称.随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训…
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…