使用python实现深度神经网络 3 快速计算梯度的魔法--反向传播算法 快速计算梯度的魔法--反向传播算法 一.实验介绍 1.1 实验内容 第一次实验最后我们说了,我们已经学习了深度学习中的模型model(神经网络).衡量模型性能的损失函数和使损失函数减小的学习算法learn(梯度下降算法),还了解了训练数据data的一些概念.但是还没有解决梯度下降算法中如何求损失函数梯度的问题. 本次实验课,我们就来学习一个能够快速计算梯度的算法--反向传播算法(backpropogate algorith…
使用python实现深度神经网络 1(转) https://blog.csdn.net/oxuzhenyi/article/details/73026790…
https://blog.csdn.net/oxuzhenyi/article/details/73026807 使用浅层神经网络识别图片中的英文字母 一.实验介绍 1.1 实验内容 本次实验我们正式开始我们的项目:使用神经网络识别图片中的英文字母. 激动人心的时刻到了,我们将运用神经网络的魔力,解决一个无法使用手工编程解决的问题.如果你(自认为)是一个程序员,本次实验结束后,你将变得与其他只会手工编写程序的程序员不同. 1.2 实验知识点 “浅层”与“深度”的区别 泛化性能 随机梯度下降算法…
https://blog.csdn.net/oxuzhenyi/article/details/73026796 导数与梯度.矩阵运算性质.科学计算库numpy 一.实验介绍 1.1 实验内容 虽然在实验一中我想尽量少的引入(会让人放弃继续学习的)数学概念,但我似乎还是失败了.不过这几乎是没有办法的事,要想真正学会深度学习,没有一定的数学基础(高等数学.线性代数.概率论.信息论等),(几乎)是不可能的.学深度学习不学其中的原理你可能能够学会搭建模型,但当模型出了问题或者无法训练出好的结果时,不懂…
import tensorflow as tf import numpy as np ''' 初始化运算图,它包含了上节提到的各个运算单元,它将为W,x,b,h构造运算部件,并将它们连接 起来 ''' graph = tf.Graph() #一次tensorflow代码的运行都要初始化一个session session = tf.InteractiveSession(graph=graph) ''' 我们定义三种变量,一种叫placeholder,它对应输入变量,也就是上节计算图所示的圆圈部分,…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
Keras介绍   Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow.Theano.MXNet以及CNTK.Keras 为支持快速实验而生,能够把你的idea迅速转换为结果.Keras适用的Python版本是:Python 2.7-3.6.   Keras,在希腊语中意为"角"(horn),于2015年3月份第一次发行,它可以在Windows, Linux, Mac等系统中运行.那么,既然有了TensorFlow(或Theano.M…
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安装二.Xshell远程连接Ubuntu系统三.Jupyter notebook服务器的配置及远程访问四.远程环境的测试Tensorflow软件库的安装简单爬虫数据可视化基于神经网络实现fashion_mnist图片的识别总结 前言 如今,人工智能.深度学习等高深知识逐渐融入大家的视野,小大验证码的识…
×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflow,更加灵活地控制训练过程.本文演示了如何使用低阶TensorFlow Core 搭建卷积神经网络(ConvNet)模型,并演示了使用TensorFlow编写自定义代码的方法. 对很多开发人员来说,神经网络就像一个“黑匣子”, 而TensorFlow Core的应用,则将我们带上了对深度神经网络后台…