1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题: 问题一:不支持事务 由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误.为了规避该问题,通常控制读写任务顺序调用,在保证写任务完成后才能启动读任务.但并不是所有读任务都能够被调度系统约束住,在读取时仍存在该问题.…
为了有机地发展业务,每个组织都在迅速采用分析. 在分析过程的帮助下,产品团队正在接收来自用户的反馈,并能够以更快的速度交付新功能. 通过分析提供的对用户的更深入了解,营销团队能够调整他们的活动以针对特定受众. 只有当我们能够大规模提供分析时,这一切才有可能. 对数据湖的需求 在 NoBrokercom,出于操作目的,事务数据存储在基于 SQL 的数据库中,事件数据存储在 No-SQL 数据库中. 这些应用程序 dB 未针对分析工作负载进行调整. 此外,为了更全面地了解客户和业务,通常需要跨交易和…
Kyligence联合创始人兼CEO,Apache Kylin项目管理委员会主席(PMC Chair)韩卿 武汉市云升科技发展有限公司董事长,<智慧城市-大数据.物联网和云计算之应用>作者杨正洪 万达网络科技集团大数据中心副总经理,<Spark高级数据分析>中文版译者龚少成 数据架构师,IT脱口秀(清风那个吹)创始人,<开源大数据分析引擎Impala实战>作者贾传青 等等业内专家联合推荐 Apache Kylin是一个开源的分布式分析引擎,提供Hadoop之上的SQL查…
1. 摘要 在本博客中,我们将讨论在构建流数据平台时如何利用 Hudi 的两个最令人难以置信的能力. 增量消费--每 30 分钟处理一次数据,并在我们的组织内构建每小时级别的OLAP平台 事件流的无限回放--利用 Hudi 的提交时间线在超级便宜的云对象存储(如 AWS S3)中存储 10 天的事件流(想象一个具有 10 天保留期的 kafka 主题) 具有部分记录更新的自定义 Hudi Payload 类 2. 当前状态 2.1 问题说明 对于大多数业务需要手动干预以通过查看 KPI 和数据趋…
1. 引言 从确保准确预计到达时间到预测最佳交通路线,在Uber平台上提供安全.无缝的运输和交付体验需要可靠.高性能的大规模数据存储和分析.2016年,Uber开发了增量处理框架Apache Hudi,以低延迟和高效率为关键业务数据管道赋能.一年后,我们开源了该解决方案,以使得其他有需要的组织也可以利用Hudi的优势.接着在2019年,我们履行承诺,进一步将其捐赠给了Apache Software Foundation,差不多一年半之后,Apache Hudi毕业成为Apache Softwar…
来自字节跳动的管梓越同学一篇关于Apache Hudi在字节跳动推荐系统中EB级数据量实践的分享. 接下来将分为场景需求.设计选型.功能支持.性能调优.未来展望五部分介绍Hudi在字节跳动推荐系统中的实践. 在推荐系统中,我们在两个场景下使用数据湖 我们使用BigTable作为整个系统近线处理的数据存储,这是一个公司自研的组件TBase,提供了BigTable的语义和搜索推荐广告场景下一些需求的抽象,并屏蔽底层存储的差异.为了更好的理解,这里可以把它直接看做一个HBase.在这过程中为了能够服务…
本博客的重点展示如何利用增量数据处理和执行字段级更新来构建一个开放式 Lakehouse. 我们很高兴地宣布,用户现在可以使用 Apache Hudi + dbt 来构建开放Lakehouse. 在深入了解细节之前,让我们先澄清一下本博客中使用的一些术语. 什么是 Apache Hudi? Apache Hudi 为Lakehouse带来了 ACID 事务.记录级更新/删除和变更流. Apache Hudi 是一个开源数据管理框架,用于简化增量数据处理和数据管道开发.该框架更有效地管理数据生命周…
题记:昨晚在一个技术社区直播分享了"利用Azure Functions和k8s构建Serverless计算平台"这一话题.整个分享分为4个部分:Serverless概念的介绍.Azure Functions的简单介绍.k8s和KEDA的介绍和最后的演示. Serverless Serverless其实包含了两种概念:BaaS(Backend as a Service)和FaaS(Function as a Service).这次的分享主要针对的是FaaS概念. FaaS的最大特征就是:…
摘要:本文主要介绍 Presto 如何更好的利用 Hudi 的数据布局.索引信息来加速点查性能. 本文分享自华为云社区<华为云基于 Apache Hudi 极致查询优化的探索实践!>,作者:FI_mengtao. 背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 FusionInsight MRS智能数据湖解决方案中. 目前主流的三大数据湖组件 Apach…
基于 Apache Mahout 构建社会化推荐引擎 http://www.ibm.com/developerworks/cn/views/java/libraryview.jsp 推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影.音乐.书籍.新闻.图片.网页等)推荐给可能感兴趣的用户.通常情况下,推荐引擎的实现是通过将用户 的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度.参考特征的选取可能是从项目本身的信息…