WOE(weight of evidence, 证据权重)】的更多相关文章

1. WOE(weight of evidence, 证据权重) WOE是一种衡量正常样本( Good)和违约样本( Bad)分布的差异方法 WOE=ln(Distr Good/Distr Bad)例如 :在上表 在上表 中年龄在 年龄在 23-26这组 样本 的 WOE值为: ln(0.13610.2813)=−0.72613…
更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 先简单回顾一下WOE的含义.假设x是类别变量或分箱处理过的连续变量,含R个类别或分段,取值为{C1, ..., Cr, ..., CR}:y是目标变量,取值为0(Good)或1(Bad).x和y的频数表如下: 1.概念回顾 先简单回顾一下WOE的含义.假设x是类别变量或分箱处理过的连续变量,含R个类别或分段,取值为{C1, ..., Cr, ..., CR}:y是目标变量,取值为0(Good)或1(Bad).x和y的频数…
Given a nested list of integers, return the sum of all integers in the list weighted by their depth. Each element is either an integer, or a list -- whose elements may also be integers or other lists. Example 1: Given the list [[1,1],2,[1,1]], return…
信用评分卡模型在国外是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用,其原理是将模型变量WOE编码方式离散化之后运用logistic回归模型进行的一种二分类变量的广义线性模型. 本文重点介绍模型变量WOE以及IV原理,为表述方便,本文将模型目标标量为1记为违约用户,对于目标变量为0记为正常用户: 则WOE(weight of Evidence 证据权重)其实就是自变量取某个值的时候对违约比例的一种影响, 怎么理解这句话呢?我下面通过一个图标来进行说明. Woe…
WOE:信用评分卡模型中的变量离散化方法 2016-03-21 生存分析 在做回归模型时,因临床需要常常需要对连续性的变量离散化,诸如年龄,分为老.中.青三组,一般的做法是ROC或者X-tile等等.今天介绍一种在信用卡评分系统中常用的连续变量离散化方法.目的是给大家在临床数据分析中提供一种借鉴思路. 最初接触信用卡评分系统是在2013年SAS中国数据分析大赛总决赛上,题目是用历史数据建立一个信用卡评分系统,其中的变量离散化技术主要用到WOE(Weight of Evidence)翻译过来叫证据…
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://zhuanlan.zhihu.com/p/20603744参考 在机器学习的二分类问题中,WOE(Weight of Evidence)和Infor…
一.变量分箱 变量分箱常见于逻辑回归评分卡的制作中,在入模前,需要对原始变量值通过分箱映射成woe值.举例来说,如"年龄"这一变量,我们需要找到合适的切分点,将连续的年龄打散到不同的"箱"中,并按年龄落入的"箱"对变量进行编码. 关于变量分箱的作用,相关资料中的解释有很多,我认为变量分箱最主要有三个作用: 归一化:分箱且woe编码映射后的变量,可以将变量归一到近似尺度上: 引入非线性:对于逻辑回归这类线性模型,引入变量分箱可以增强模型的拟合能力:…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share  banking case1 http://ucanalytics.com/blogs/data-visualization-case-study-banking/ A…
信用评分卡模型在国外是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用,其原理是将模型变量WOE编码方式离散化之后运用logistic回归模型进行的一种二分类变量的广义线性模型. 本文重点介绍模型变量WOE以及IV原理,为表述方便,本文将模型目标标量为1记为违约用户,对于目标变量为0记为正常用户:则WOE(weight of Evidence)其实就是自变量取某个值的时候对违约比例的一种影响,怎么理解这句话呢?我下面通过一个图标来进行说明. Woe公式如下: A…
server: port: 8080 spring: application: name: gateway cloud: gateway: routes: - id: guo-system1 uri: https://www.baidu.com predicates: - Weight=group1, 8 #路由权重比,80% filters: - StripPrefix=1 - id: guo-system2 uri: https://www.json.cn predicates: - Wei…