洛谷P3810 陌上花开 (cdq)】的更多相关文章

好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加在一起,而是加在每朵花内部. 很裸的一道CDQ分治,CDQ一维,sort一维,TreeArray一维,然后就爆0了...... 把cmp函数改完备之后还是爆0,为什么呢? 看一下这一组样例: 5 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 看得出来正确答案是1 0 0 0 4 但…
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 200005; int n, k, m; struct node{ int x, y, z, id, w; bool operator < (const node &a…
原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第$i$个元素有$a_i$.$b_i$.$c_i$三个属性,设$f(i)$表示满足$a_j\leq a_i$且$b_j\leq b_i$且$c_j\leq c_i$的$j$的数量.对于$d\in [0,n)$,求$f(i)=d$的数量. $n\leq 100000,max\{a_i,b_i,c_i|i…
最近才学了cdq,所以用cdq写的代码(这道题也是cdq的模板题) 这道题是个三维偏序问题,先对第一维排序,然后去掉重复的,然后cdq分治即可. 为什么要去掉重复的呢?因为相同的元素互相之间都能贡献,而cdq过程中只能左边贡献右边的,所以要去重. 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=200005; 4 struct node{ 5 int a,b,c,cnt,ans; 6 }s1[N],s2[N]; 7…
陌上花开 CDQ分治 传送门:https://www.luogu.org/problemnew/show/P3810 题意: \[ 有n 个元素,第 i 个元素有 a_i. b_i. c_i 三个属性,设 f(i) 表示满足 a_j\leq a_i 且 b_j \leq b_i且 c_j \leq c_i的 j 的数量.\\ 对于 d \in [0, n],求 f(i) = d 的数量 \] 题解: CDQ分治模板题, 我们将第一维在主函数排序后,cdq分治里面,每次将左半边和右半边按照y排序,…
在solve(L,R)中,需要先分治solve两个子区间,再计算左边区间修改对右边区间询问的贡献. 注意,计算额外的贡献时,两子区间各自内部的顺序变得不再重要(不管怎么样左边区间的都发生在右边之前),于是就少了一维 https://www.lydsy.com/JudgeOnline/problem.php?id=3262 https://www.luogu.org/problemnew/show/P3810 此题每个操作既是修改又是查询 对于此题,先按一维排序,在solve(L,R)中先solv…
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种特殊的分治方法,在 OI 界初见于陈丹琦 2008 年的集训队作业中,因此被称为 CDQ 分治. CDQ分治是将操作分治,用于解决"修改独立,允许离线"的问题.本质为按时间分治. 可以用CDQ的题目必须满足: 1.修改与询问互相独立,且修改之间互不影响 2.允许离线 那么我们将操作序列分为…
题目大意:给定一个三维空间点的坐标,求对于任意一个点三维均小于等于这个点的点个数. 题解:学会了简单的 cdq 分治. 首先,先将第一维从小到大排序,再用类似归并排序的操作对第二维进行排序,在第二维合并的过程中,用树状数组维护第三维,统计左半部分对右半部分答案的贡献. 需要注意的几点问题,如下: 如果有几个点的三个维度完全相同的话,需要做去重处理,因为每个点在归并的时候只会将在这个点左边的点计入该点的答案贡献,但是实际上对于这些相同的点来说,其他所有相同的点对任意一个点都有相同的答案贡献. 在…
题目大意:有$n$个元素,第$i$个元素有三个属性$a_i,b_i,c_i$,设$f(i)=\sum\limits_{i\not = j}[a_j\leqslant a_i,b_j\leqslant b_i,c_j\leqslant c_i]$,令$d(i)=\sum\limits_{j=1}^n[f(j)=i]$,求$d$ 题解:三位偏序,我用了$CDQ$分治,$a$排序解决,$b$$CDQ$分治,$c$用树状数组 卡点:无 C++ Code: #include <cstdio> #incl…
喜闻乐见的CDQ分治被我搞的又WA又T..... 大致思路是这样的:把询问用二维前缀和的思想拆成4个子询问.然后施CDQ大法即可. 我却灵光一闪:树状数组是可以求区间和的,那么我们只拆成两个子询问不就行了?在统计的时候统计一个差值即可. 然后一交,自信40... 那么果然还是拆成4个吧...T了,60分. 然后放弃那个朴素的sort版CDQ,采用了归并,就A了. #include <cstdio> #include <algorithm> using namespace std;…