基于AIE的贵州省FVC提取】的更多相关文章

植被覆盖度获取 植被覆盖度(Fractional Vegetation Cover,FVC),是指植被(包括叶.茎.枝)在地面的垂直投影面积占统计区总面积的百分比,范围在 [0,1] 之间.FVC 是刻画地表植被覆盖的重要参数,能够直观的反映一个地区绿的程度,是反应植被生长状态的重要指标,在植被变化.生态环境研究.水土保持.城市宜居等方面问题研究中起到重要作用.本案例以 Landsat-8 数据为例,计算贵州省区域的 FVC 指数. 初始化环境 import aie aie.Authentica…
基于TF-IDF的新闻标签提取 1. 新闻标签 新闻标签是一条新闻的关键字,可以由编辑上传,或者通过机器提取.新闻标签的提取主要用于推荐系统中,所以,提取的准确性影响推荐系统的有效性.同时,对于将标签展示出来的新闻网站,标签的准确性也会影响用户体验. 2. 新闻标签提取算法 新闻首先是一段文本,新闻的标签首先是这一段文本的关键字.在文本关键字提取当中,TD-IDF是首先可以想到的算法.TF-IDF算法的优点是:简单快速,结果比较符合实际情况:缺点是,单纯以"词频"衡量一个词的重要性,不…
基于注意力的街景图像提取结构化信息 一种用于真实图像文本提取问题的TensorFlow模型. 该文件夹包含在FSNS数据集数据集上训练新的注意OCR模型所需的代码,以在法国转录街道名称. 您还可以使用它来根据自己的数据进行培训. 更多细节可以在我们的论文中找到: "从街景图像注意为基础提取结构化信息" 项目地址:https://github.com/tensorflow/models/tree/master/attention_ocr Attention-based Extractio…
我们将现有的 提取方法(Extractive)(如LexRank,LSA,Luhn和Gensim现有的TextRank摘要模块)与含有51个文章摘要对的Opinosis数据集进行比较.我们还尝试使用Tensorflow的文本摘要算法进行抽象技术(Abstractive),但由于其极高的硬件需求(7000 GPU小时,$ 30k云信用额),因此无法获得良好的结果. 为什么要文字摘要? 随着推送通知和文章摘要获得越来越多的需求,为长文本生成智能和准确的摘要已经成为流行的研究和行业问题. 文本摘要有两…
笔者保存了一些outlook邮箱中保存的一些msg格式的邮件文件,现需要将其中的附件提取出来, 当然直接在outlook中就可以另存附件,但outlook默认是不支持批量提取邮件中的附件的 思考过几种方案,其中之一就是使用python编程语言下的extract_msg模块,记录如下 1.安装extract_msg模块 pip install extract-msg ,笔者写此随笔时,最新版本为extract-msg 0.27.4 发布于Released: Sep 3, 2020,项目说明:htt…
1. 词云简介 词云,又称文字云.标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思.常见于博客.微博.文章分析等. 除了网上现成的Wordle.Tagxedo.Tagul.Tagcrowd等词云制作工具,在python中也可以用wordcloud包比较轻松地实现(官网.github项目): from wordcloud import WordCloud import matplotlib.pypl…
1.文件结构目录 2.具体实现 ①添加maven依赖 <dependency> <groupId>net.sourceforge.tess4j</groupId> <artifactId>tess4j</artifactId> <version>3.2.1</version> </dependency> ②建立tessdata文字识别库,并添加识别库 资源地址  :https://github.com/tess…
为什么要做正文提取 一般做舆情分析,都会涉及到网页正文内容提取.对于分析而言,有价值的信息是正文部分,大多数情况下,为了便于分析,需要将网页中和正文不相干的部分给剔除.可以说正文提取的好坏,直接影响了分析结果的好坏. 对于特定的网站,我们可以分析其html结构,根据其结构来获取正文信息.先看一下下面这张图: 正文部分,不同的网站,正文所在的位置不同,并且Html的结构也不同,对于爬虫而言,抓取的页面是各种各样的,不可能针对所有的页面去写抓取规则来提取正文内容,因此需要一种通用的算法将正文提取出来…
很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank [1]. 1. 介绍 TextRank由Mihalcea与Tarau于EMNLP'04提出来,其思想非常简单:通过词之间的相邻关系构建网络,然后用PageRank迭代计算每个节点的rank值,排序rank值即可得到关键词.PageRank本来是用来解决网页排名的问题,网页之间的链接关系即为图的边,迭代…
很久以前,我用过TFIDF做过行业关键词提取.TFIDF仅仅从词的统计信息出发,而没有充分考虑词之间的语义信息.现在本文将介绍一种考虑了相邻词的语义关系.基于图排序的关键词提取算法TextRank. 1. 介绍 TextRank由Mihalcea与Tarau于EMNLP'04 [1]提出来,其思想非常简单:通过词之间的相邻关系构建网络,然后用PageRank迭代计算每个节点的rank值,排序rank值即可得到关键词.PageRank本来是用来解决网页排名的问题,网页之间的链接关系即为图的边,迭代…