本节主要介绍的是libFM源码分析的第五部分之一--libFM的训练过程之SGD的方法. 5.1.基于梯度的模型训练方法 在libFM中,提供了两大类的模型训练方法,一类是基于梯度的训练方法,另一类是基于MCMC的模型训练方法.对于基于梯度的训练方法,其类为fm_learn_sgd类,其父类为fm_learn类,主要关系为: fm_learn_sgd类是所有基于梯度的训练方法的父类,其具体的代码如下所示: #include "fm_learn.h" #include "../…
本节主要介绍的是libFM源码分析的第五部分之二--libFM的训练过程之Adaptive Regularization的方法. 5.3.Adaptive Regularization的训练方法 5.3.1.SGD的优劣 在"机器学习算法实现解析--libFM之libFM的训练过程之SGD的方法"中已经介绍了基于SGD的FM模型的训练方法,SGD的方法的最大优点是其训练过程很简单,只需在计算的过程中求解损失函数对每一个参数的偏导数,从而实现对模型参数的修改. 我们都知道,FM模型对正则…
本节主要介绍的是libFM源码分析的第四部分--libFM的训练. FM模型的训练是FM模型的核心的部分. 4.1.libFM中训练过程的实现 在FM模型的训练过程中,libFM源码中共提供了四种训练的方法,分别为:Stochastic Gradient Descent(SGD),Adaptive SGD(ASGD),Alternating Least Squares(ALS)和Markov Chain Monte Carlo(MCMC),其中ALS是MCMC的特殊形式,实际上其实现的就是SGD…
本节主要介绍的是libFM源码分析的第三部分--libFM的模型处理. 3.1.libFM中FM模型的定义 libFM模型的定义过程中主要包括模型中参数的设置及其初始化,利用模型对样本进行预测.在libFM中,首先定义FM模型,在fm_model类中实现对FM模型的定义,fm_model类在"\libfm-1.42.src\src\fm_core\fm_model.h"中.在定义fm_model类之前,使用到了一些数据类: #include "../util/matrix.h…
在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理"(眼下还没公布).掌握例如以下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CBOW模型和Skip-gram模型的网络结构 Hierarchical Softmax和Negative Sampling的训练方法 Hierarchical Softmax与Huffman树的关系 有了如上的一些概念,接下来就能够去读word2vec的源代码. 在源代码的解析过程中,对于基础知识部分仅仅会做简…
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景       协同过滤(collaborative filtering)是推荐系统经常使用的一种方法.cf的主要思想就是找出物品类似度高的归为一类进行推荐.cf又分为icf和ucf. icf指的是item collaborative filtering,是将商品进行分析推荐.同理ucf的u指的是user,他是找出知趣类似的人,进行推荐. 通常来讲icf的准确率可能会高一些.通过这次參加天猫大数据比赛.…
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…
一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大?可见,最优化的作用十分强大.接下来,我们介绍几个最优化算法,并利用它们训练出一个非线性函数用于分类. 假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类…