目录 偏倚与方差 Bagging 自助采样 投票 随机森林 参考文献: ''团结就是力量'' 对问题进行建模时, 算法无论如何优化都无法达到我们的要求,又或者精准算法的实现或调优成本太大, 这时,我们就会想,能不能把几个算法或模型结合起来,以'集体'的力量来解决问题? 这就是集成学习产生的原因. 偏倚与方差 在俱体讲解集成学习之前,先介绍一个概念偏倚-方差. 衡量模型的好坏, 最常用的方法就是其准确性, 拿回归举例, 数据真实值是 y, 而我们应用某一模型预测到的值是 \(\hat{y}\).…