reduce个数问题】的更多相关文章

参考: https://blog.csdn.net/wuliusir/article/details/45010129 https://blog.csdn.net/zhong_han_jun/article/details/50814246 1.split的计算方式: splitsize = max(splitsize,min(blocksize,filesize/NUMmaps)) NUMmaps即为默认的map数,默认为1,也就是说最大的splitsize为文件的大小. 2.不同的hive.…
一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个m…
reduce的数目究竟和哪些因素有关 1.我们知道map的数量和文件数.文件大小.块大小.以及split大小有关,而reduce的数量跟哪些因素有关呢?  设置mapred.tasktracker.reduce.tasks.maximum的大小能够决定单个tasktracker一次性启动reduce的数目,可是不能决定总的reduce数目. conf.setNumReduceTasks(4);JobConf对象的这种方法能够用来设定总的reduce的数目,看下Job Counters的统计: J…
1.参数变更1.x 参数名                                                         2.x 参数名 mapred.tasktracker.reduce.tasks.maximum     mapreduce.tasktracker.reduce.tasks.maximummapred.reduce.tasks                                       mapreduce.job.reduces 2.参数设置…
reduce的数目到底和哪些因素有关 1.我们知道map的数量和文件数.文件大小.块大小.以及split大小有关,而reduce的数量跟哪些因素有关呢?  设置mapred.tasktracker.reduce.tasks.maximum的大小可以决定单个tasktracker一次性启动reduce的数目,但是不能决定总的reduce数目. Job Counters Data-local map tasks=2 Total time spent by all maps waiting after…
关于hadoop中的map过程,我的理解是每一个map系统会开启一个JVM进程来处理,map之间相互并行,map函数内串行.这样的想法是否正确? 由于想在hadoop集群上算一个初始输入数据不多,但是计算很复杂的程序,希望通过mapreduce来达到并行计算的目的.可以通过job.setNumReduceTasks(0);语句设置reduce个数为0,只使用map来计算.但是设置map的个数时遇到了问题:新的API中job没有类似setNumMapTasks()这样的方法; 在运行时加入参数-D…
一.    控制hive任务中的map数:  1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个m…
order by order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规 模较大时,需要较长的计算时间. set hive.mapred.mode=nonstrict; (default value / 默认值) set hive.mapred.mode=strict; order by 和数据库中的Order by 功能一致,按照某一项&几项排序输出. 与数据库中 order by 的区别在于在hive.ma…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例: a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个ma…
一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.    举例:a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数…