(2)卷积 & 卷积和】的更多相关文章

参考资料:<信号与系统(第二版)> 杨晓非 何丰 连续信号的是卷积积分,离散信号的是卷积和. 脉冲分量 任意非周期信号,将横坐标分为若干个微小等分,得到Δτ为宽,f(kΔτ)为高的一系列微小矩形,每一个微小矩形都是f(kΔτ)为高的门限函数fk(t)=f(kΔτ)gΔτ(t-kΔτ),Δτ越小,误差越小.当Δτ→0时,有Δτ→dτ,kΔτ→τ(这里的k趋近于无穷),由此等式的极限精确地等于原函数. 因此该积分式定义为任意信号f(t)与单位冲激信号δ(t)卷积积分: 任意离散信号的分解 任意离散…
1 信号处理中的卷积 无论是信号处理.图像处理还是其他一些领域,我们经常会在一些相互关联的数据处理中使用卷积.卷积可以说是算法中一个非常重要的概念.这个概念最早起源于信号处理之中. 假设对于一个线性系统其在单位脉冲δ(t)的响应下,输出为h(t).那么在Aδ(t)的响应下输出为Ah(t).而所有的信号都可以用δ(t)乘以一个系数的和来表示.即 .于是对于线性系统而言,我们可以将当前及过去所有时刻信号(看出无数个脉冲乘以系数)产生的输出进行叠加来得到当前时刻的输出.即对于任意时刻 的输出为 .关于…
论文原址:MobileNets v1 TensorFlow实现:mobilenet_v1.py TensorFlow预训练模型:mobilenet_v1.md 一.深度可分离卷积 标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于,为什么一定要同时考虑图像区域和通道?我们为什么不能把通道和空间区域分开考虑? 深度可分离卷积提出了一种新的思路:对于不同的输入channel采取不同的卷积核进行卷积,它将普通的卷积操作分解为两个过程. 卷积过程 假设有…
题面 解析 神仙LZF随机找出的毒瘤题. 一开始读题过于草率导致\(naive\)了. step 1 看上去特别像数位DP(实际上也有一点). 先预处理出有\(i\)位的数(最高位不为\(0\))的数的变换值的和\(f[i]\), 它可以通过一段数前后各拼上一个数得到(也就是通过\(f[i-2]\)转化). 再设\(g[i]\)表示最高位可以为\(0\)的和, 那么\(f[i]=(g[i-2]*90+90*45*jc[i-2])\), $g[i]=g[i-2]100+9045*jc[i-2] $…
转自:http://blog.csdn.net/malefactor/article/details/51078135 CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型.图1展示了在NLP任务中使用CNN模型的典型网络结构.一般而言,输入的字或者词用Word Embedding的方式表达,这样本来一维的文本信息输入就转换成了二维的输入结构,假设输入X包含m个字符,而每个字符的Word Embedding的长度为d,那么输入就是m*d的二维向量. 图1 自然语言处理中CNN模型…
一.计算机视觉 如图示,之前课程中介绍的都是64* 64 3的图像,而一旦图像质量增加,例如变成1000 1000 * 3的时候那么此时的神经网络的计算量会巨大,显然这不现实.所以需要引入其他的方法来解决这个问题. 二.边缘检测示例 边缘检测可以是垂直边缘检测,也可以是水平边缘检测,如上图所示. 至于算法如何实现,下面举一个比较直观的例子: 可以很明显的看出原来6 * 6的矩阵有明显的垂直边缘,通过3 * 3的过滤器(也叫做 "核")卷积之后,仍然保留了原来的垂直边缘特征,虽然这个边缘…
过滤器(卷积核) 传统的图像过滤器算子有以下几种: blur kernel:减少相邻像素的差异,使图像变平滑. sobel:显示相邻元素在特定方向上的差异. sharpen :强化相邻像素的差异,使图片看起来更生动. outline:也称为edge kernel,相邻像素相似亮度的像素点设成黑,有较大差异的设为白. 更多可参考 image-kernels 在线演示不同的卷积过滤器. CNN 卷积层 CNN做的事情不是提前决定好过滤器,而是把过滤器当成参数不断调整学习,学出合适的过滤器.卷积网络的…
谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN模型之MobileNet Mobilenet网络的理解 轻量化网络:MobileNet-V2 Tensorflow实现参考: https://github.com/Zehaos/MobileNet 前言: 目前,CNN以及其他神经网络正在飞速发展与应用,为了追求高准确率,网络模型的深度和复杂度越来越…
背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳. 全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature m…
原创循环卷积代码,转载需注明出处 线性卷积与循环卷积的比较 实验目的和要求 掌握循环卷积和线性卷积的原理,与理论分析结果比较,加深理解循环卷积与线性卷积之间的关系. 实验内容和步骤 1) 已知两序列X(n) =   ;  h(n)=: 求两序列的线性卷积和它们的 N 点循环卷积: 2)设计一个GUI小软件,对N进行设定和调整,显示的序列(用stem 画出)时域信号图,线性卷积和N点循环卷积的时域结果图,要求N改变结果图也随之改变: 3)总结归纳循环卷积与线性卷积之间的关系. 实验要求 1) 提供…