caffe 指定GPU】的更多相关文章

caffe默认使用编号为0的gpu, 若它的内存不够或正忙, 即使有其余gpu空闲, caffe也不会使用. 要用哪个gpu, 就要明确指定哪个. 不指定则使用默认. 命令行 ./build/tools/caffe train --solver=examples/testXXX/solver.prototxt # 使用默认的gpu0 ./build/tools/caffe train --solver=examples/testXXX/solver.prototxt --gpu 2 ./buil…
tensorflow指定GPU训练 import os os.environ[CUDA_VISIABLE_DEVICES] = '0,1'记住DEVICES是复数 range()返回的是range object,而np.nrange()返回的是numpy.adarray() 两者都是均匀地(evenly)等分区间:range尽可用于迭代,而np.arange作用远不止于此,它是一个序列,可被当做向量使用.range()不支持步长为小数,np.arange()支持步长为小数 两者都可用于迭代 两者…
查过好几次这个命令,总是忘,转一篇mark一下吧 转自:http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU. 有如下两种方法来指定需要使用的GPU. 1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES. 1.1 直接终端中设定: CUDA_VISIBLE_DEVICES=1 python my_script.py 1.2…
GPU占用率查看: 方法一:任务管理器 如图,GPU0和GPU1的占用率如下显示. 方法二:GPU-Z软件       下面两个GPU,上面是GPU0,下面是GPU1 sensors会话框里的GPU Load就是占用率 大家可以查看GPU0和GPU1的使用与否和使用率 方法三:终端查看 在运行中输入cmd,打开终端 输入cd C:\Program Files\NVIDIA Corporation\NVSMI 回车 输入nvidia-smi 输出为 其中GPU下的0和1 指不同GPU,Memory…
issue: Error when Building GPU docker image for caffe: Unsupported gpu architecture 'compute_60' reason: CUDA < 8.0 solution: In the Makefile.example, try commenting out the *_60 and *_61 lines (for compatibility with CUDA < 8.0). CUDA_ARCH := -genc…
查看机器上GPU情况 命令: nvidia-smi 功能:显示机器上gpu的情况 命令: nvidia-smi -l 功能:定时更新显示机器上gpu的情况 命令:watch -n 3 nvidia-smi 功能:设定刷新时间(秒)显示GPU使用情况 在终端执行程序时指定GPU CUDA_VISIBLE_DEVICES=1   python  your_file.py 这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见 可用的形式如下: CUDA_VISIBLE_DEVICES…
[转] MATLAB下如何指定GPU资源 原文链接…
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c…
一.命令行运行python程序时 1.首先查看哪些GPU空闲,nvidia-smi显示当前GPU使用情况. nvidia-smi 2.然后指定空闲的GPU运行python程序. CUDA_VISIBLE_DEVICES=0,2,3 python test.py 二.在python程序中指定GPU import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,2,3" PS:周期性输出GPU使用情况 每 10s 显示一次GPU使用…
Caffe框架GPU与MLU计算结果不一致请问如何调试? 某一检测模型移植到Cambricon Caffe上时,发现无法检测出结果,于是将GPU和MLU的运行结果输出并保存后进行对比,发现二者计算结果不一致,如下图所示: 第一张为GPU模式下,第二张为GPU模式,二者使用的输入和数据预处理方式均完全一样,该输出为网络第一层卷积的部分输出. 用Cambricon Caffe提供的test_forward工具验证该模型在CPU和MLU模式下的输入,结果仍不一致,如下图所示: 第一张为MLU模式下的输…