E. Double Elimination DP 01枚举状态和倍增思想 题意 参考DOTA2双败赛制,一共有\(2^n\)个队打n轮 其中你有k喜欢的队伍,由你掌控比赛的输赢请问比赛中包含你喜欢的队伍的场次最多有多少场 思路 看数据就很DP,但是比赛的时候不知道怎么搞.其实喜欢队伍与否就是一个01状态,每一场比赛的都会尝生一个胜利队伍和一个失败队伍,把这个胜利和失败队伍去和相邻的胜利和失败的队伍去比就会另外一个胜利和失败的队伍,这样就可以用倍增的思想去定义状态. 我们定状态为\(dp[i][j…
题意: 给你一个高为h,宽为w的矩阵,你需要用1*2或者2*1的矩阵填充它 问你能有多少种填充方式 题解: 如果一个1*2的矩形横着放,那么两个位置都用二进制1来表示,如果是竖着放,那么会对下一层造成影响,所以我们在 这个位置用0来表示,那么下一层的这一列就必须使用1.可以说竖着放是用 0 1 这样来表示 例如上一层的状态是(二进制表示为):11001111 那么我们先对它取反00110000,为什么要这样呢,因为上一层0的位置必须下一层要是1,然后我们在对状态00110000中 的0进行判断,…
好牛b的思路 题意:一系列物品,用二辆车运送,求运送完所需的最小次数,两辆车必须一起走 解法为状态压缩DP+背包,本题的解题思路是先枚举选择若干个时的状态,总状态量为1<<n,判断这些状态集合里的那些物品能否一次就运走,如果能运走,那就把这个状态看成一个物品.预处理完能从枚举中找到tot个物品,再用这tol个物品中没有交集(也就是两个状态不能同时含有一个物品)的物品进行01背包,每个物品的体积是state[i],价值是1,求包含n个物品的最少价值也就是dp[(1<<n)-1](dp…
一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V; ++j){ if(i - a[j] > 0){ dp[i] += dp[i - a[j]]; } } } 状态存在冗余, 输出的时候答案肯定不对 但只需要改一下两个for循环的顺序即可. Source Code: /* ID: wushuai2 PROG: money LANG: C++ */ //…
题意:有n个房间,有n-1条道路连接着n个房间,每个房间都有若干个野怪和一定的能量值,有m个士兵从1房间入口进去,到达每个房间必须要留下若干士兵杀死所有的野怪,然后其他人继续走,(一个士兵可以杀死20只 野怪)问可以获得的最大能量值是多少? 分析:要想进入一个房间,必须把前面所有进过的房间的野怪都杀死,当某个房间的野怪数量是0的时候也需要至少派出一个人来进入这个房间来获得能量. #include"stdio.h" #include"string.h" #includ…
2748: [HAOI2012]音量调节 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2010  Solved: 1260[Submit][Status][Discuss] Description 一个吉他手准备参加一场演出.他不喜欢在演出时始终使用同一个音量,所以他决定每一首歌之前他都要改变一次音量.在演出开始之前,他已经做好了一个列表,里面写着在每首歌开始之前他想要改变的音量是多少.每一次改变音量,他可以选择调高也可以调低. 音量用一个整数描…
UVA.10130 SuperSale (DP 01背包) 题意分析 现在有一家人去超市购物.每个人都有所能携带的重量上限.超市中的每个商品有其相应的价值和重量,并且有规定,每人每种商品最多购买一个.求这一家人所能购买到的最大价值是多少. 每个人的所能携带的最大重量即为背包容量.此题只是换成n个人而已.所以分别以每个人最大携带重量为背包容量,对所有商品做01背包,求出每个人的最大价值.这些最大价值之和即为这家人购物的最大价值. 核心状态转移方程: dp[i][j] = max(dp[i][j],…
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上布置一片阿姆斯特朗回旋加速式阿姆斯特朗炮,那么在N行M列单位长度大小的地图上,求解阿姆斯特朗回旋加速式阿姆斯特朗炮最大的部署数量和对应部署方案总数. 输入 每组输入一行,为两个整数N,M (N <= 100:M <= 10) 输出 每组一行两个整数, 第一个为阿姆斯特朗回旋加速式阿姆斯特朗炮的个数…
状压dp是将每种状态都压缩成用一个二进制串,然后利用位运算进行操作的dp,而凡是dp都需要进行状态转移 对于简单的dp问题只需要一个二维数组dp[ i ][ j ]就能解决 具体操作为首先把状态压缩为二进制串, 然后对第一行进行初始化, 再利用三个for循环进行状态转移(第一层for循环控制行的前进,第二个和第三个for循环控制本行和上一行的状态) 利用状态转移对二维数组进行不断的更新(可以想到其实就是在不断更新填写一个二维表) 而复杂一点的dp问题就需要一个三维数组dp[ i ][ k ][…
HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define nmax 505 #define nn 505*100 using namespace std;…