题目下载[传送门] 第1步:读取数据文件,并可视化: % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in your environment load ('ex5data1.mat'); % m = Number of examples m = size(X, 1); % Plot training data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1…
题目下载[传送门] 第1题 简述:对于一组网络数据进行异常检测. 第1步:读取数据文件,使用高斯分布计算 μ 和 σ²: % The following command loads the dataset. You should now have the % variables X, Xval, yval in your environment load('ex8data1.mat'); % Estimate my and sigma2 [mu sigma2] = estimateGaussia…
题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 第1步:读取数据文件: %% Setup the parameters you will use for this exercise input_layer_size = 400; % 20x20 Input Images of Digits hidden_layer_size = 25; % 25 hidden units num_labels = 10; % 10 labels, from 1 to 10 % (note…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
机器学习五 -- 机器学习的“Hello World”,感知机 感知机是二类分类的线性分类模型,是神经网络和支持向量机的基础.其输入为实例的特征向量,输出为实例的类别,取+1和-1二值之一,即二类分类.感知机对应于输入空间(特征空间)将实例划分为正负两类的分离超平面,属于判别模型.我们对于感知机的学习旨在求出将训练数据进行线性划分的分离超平面,为此目标,我们需要导入基于误分类的损失函数,利用后文所提到的梯度下降法对损失函数进行极小化,求得感知机模型. 感知机模型 对此我们都知道了什么叫感知机了.…
<机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习).在本文中,我们关注其中一个比较简单的聚类算法:k-means算法. k…
机器学习:K-近邻算法(KNN) 一.KNN算法概述 KNN作为一种有监督分类算法,是最简单的机器学习算法之一,顾名思义,其算法主体思想就是根据距离相近的邻居类别,来判定自己的所属类别.算法的前提是需要有一个已被标记类别的训练数据集,具体的计算步骤分为一下三步: 1.计算测试对象与训练集中所有对象的距离,可以是欧式距离.余弦距离等,比较常用的是较为简单的欧式距离: 2.找出上步计算的距离中最近的K个对象,作为测试对象的邻居: 3.找出K个对象中出现频率最高的对象,其所属的类别就是该测试对象所属的…
机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题.简单的说,k-近邻算法 采用了测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.控件复杂度高 适用数据范围:数值型和标称型 首先我们来理解它的工作原理: 存在一个样本数据集(训练集),并且我们知道每一数据与目标变量的对应关系,输入没有标签的新数…
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值.决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出. 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测. 一.决策树与ID3概述1.决策树 决策树,其结构和树非常相似,因此得其名决策树.决…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…