过年放了七天假,每年第一件事就是立一个flag——希望今年除了能够将技术学扎实之外,还希望能够将所学能够用来造福社会,好像flag立得有点大了.没关系,套用一句电影台词为自己开脱一下——人没有梦想,和咸鱼有什么区别.闲话至此,进入今天主题:Transformer.谷歌于2017年提出Transformer网络架构,此网络一经推出就引爆学术界.目前,在NLP领域,Transformer模型被认为是比CNN,RNN都要更强的特征提取器. Transformer算法简介 Transformer引入了s…
谷歌在4.0系统以后就禁止在主线程中进行网络访问了,原因是: 主线程是负责UI的响应,如果在主线程进行网络访问,超过5秒的话就会引发强制关闭, 所以这种耗时的操作不能放在主线程里.放在子线程里,而子线程里是不能对主线程的UI进行改变的, 因此就引出了Handler,主线程里定义Handler,子线程里使用. 消息机制的写法 [1] anr Application not response 应用无响应 主线程(UI线程) [2] 如果在主线程中进行了耗时的操作 (比如连接网络 拷贝大的数据) Th…
https://www.jianshu.com/p/25fc600de9fb 谷歌最近的一篇BERT取得了卓越的效果,为了研究BERT的论文,我先找出了<Attention is All You Need>,看看里面的Transformer模型作为基础. Transformer是为了机器翻译任务中的问题所提出的. 传统的RNN神经网络结构是可以处理任意长度的输入,它非常适合于自然语言的建模,所以它在一段时间内占据了整个神经网络中的主流.随着学术的发展,我们也会看到RNN有些不足. RNN的缺点…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利…
Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一.Seq2seq被广泛应用在机器翻译.聊天机器人甚至是图像生成文字等情境. seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列, Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列. 整个过程可以用下面这张图来诠释:…
李宏毅深度学习 https://www.bilibili.com/video/av9770302/?p=8 Generation 生成模型基本结构是这样的, 这个生成模型有个问题是我不能干预数据生成,这里是随机的, Conditional Generation 这里我们通过初始输入来增加条件, 比如要根据图片来深层文字,这里以image作为输入 当然首先要用cnn将图片生成embeding 为了防止RNN在进行的过程中forget这个输入,可以把图片作为每一步的输入传给网络 在NLP中,就是Se…
细粒度图像识别Object-Part Attention Driven Discriminative Localization for Fine-grained Image Classification(OPADDL) 论文笔记 原文:"Object-Part Attention Model for Fine-grained Image Classification", IEEE Transactions on Image Processing (TIP), Vol. 27, No.…
文章:Deep attention tracking via Reciprocative Learning 出自NIPS2018 文章链接:https://arxiv.org/pdf/1810.03851.pdf 代码链接:https://github.com/shipubupt/NIPS2018 背景: 这篇论文是NIPS2018的一篇目标跟踪的论文,是由北京邮电大学,腾讯AI实验室和上海交通大学共同合作写的.现在目标跟踪使用的算法有两种:一种是使用单阶段回归框架,另外一种是使用两阶段分类框架…
此文源自一个博客,笔者用黑体做了注释与解读,方便自己和大家深入理解Attention model,写的不对地方欢迎批评指正.. 1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的At…
1. Neural Machine Translation 下面将构建一个神经机器翻译(NMT)模型,将人类可读日期 ("25th of June, 2009") 转换为机器可读日期 ("2009-06-25"). 使用 attention model. from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply from keras.layers…