POJ1737 Connected Graph】的更多相关文章

Connected Graph Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3156   Accepted: 1533 Description An undirected graph is a set V of vertices and a set of E∈{V*V} edges.An undirected graph is connected if and only if for every pair (u,v)…
http://blog.csdn.net/sdj222555/article/details/12453629 这个递推可以说是非常巧妙了. import java.util.*; import java.io.*; import java.math.*; public class Main{ static BigInteger[] g=new BigInteger[60]; static BigInteger[] f=new BigInteger[60]; static BigInteger[…
题意:输出题中带有$n$个标号的图中连通图的个数. 解题关键: 令$f(n)$为连通图的个数,$g(n)$为非联通图的个数,$h(n)$为总的个数. 则$f(n) + g(n) = h(n)$ 考虑标号1所在的联通分量中连通图的个数. 转移方程:$g(n) = \sum\limits_{k = 1}^{n - 1} {C_{n - 1}^{k - 1}f(k)h(n - k)} $ $h(n) = \frac{{n(n - 1)}}{2}$ import java.math.*; import…
AcWing Description 求$N$个节点的无向连通图有多少个,节点有标号,编号为$1~N$. $1<=N<=50$ Sol 在计数类$DP$中,通常要把一个问题划分成若干个子问题,以便于执行递推. 一个连通图不容易划分,而一个不连通的无向图则很容易划分成结点更少的两部分.所以我们把问题转化成用$N$个点的无向图总个数减去$N$个点的不连通无向图的个数. $N$个点的无向图总个数显然是$2^{N*(N-1)/2}$,还是简单说下叭,就是$N$个点连成完全图的边数显然是$N*(N-1)…
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量,h(n)为所有的 // 图的数量,h(n) = 2 ^(n * (n - 1) / 2); // f(n) + g[n] = h(n). // // 考虑标号为1在哪个连通分量内,设连通分量内有k个点,则问题为 // 在n-1个点中选择k-1个点的方法数 C(n-1,k-1),此时1所在的连通图数…
Connected Graph Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3156   Accepted: 1533 Description An undirected graph is a set V of vertices and a set of E∈{V*V} edges.An undirected graph is connected if and only if for every pair (u,v)…
Connected Graph 求n个点的无向联通图数量,\(n\leq 50\). 解 直接无向联通图做状态等于是以边点做考虑,难以去重,考虑联通对立面即不联通. 不难求出n个点的总方案数为\(2^{\frac{n\times (n-1)}{2}}\),所以设\(f_i\)表示n个点的无向联通图个数,因此我们有 \[f_i=2^{\frac{n(n-1)}{2}}-\sum_{j=1}^{i-1}f_jC_i^j2^{\frac{(i-j)(i-j-1)}{2}}\] 但是这样的转移存在重复,…
http://poj.org/problem?id=1737 (题目链接) 题意 求n个节点的无向连通图的方案数,不取模w(゚Д゚)w Solution 刚开始想了个第二类斯特林数,然而并不知道怎么求具体方案,于是翻了题解.. 设${f_n}$表示n个节点的方案数. 那么n个节点所能够构成的无向图,无论连不连通,一共有${\frac{n*(n+1)}{2}}$条边,于是就有${2^{\frac{n*(n+1)}{2}}}$种图.考虑如何减去不连通的图的方案数. 我们选择枚举1号节点与i个节点连通…
题面 \(solution:\) 首先做个推销:带负数的压位高精度(加减乘+读写) 然后:由 \(N\) 个节点组成的无向图的总数为: \(2^{N*(N-1)/2}\) (也就是说这个图总共有 \(N*(N-1)/2\) 条边,每一条边选或不选就可以得出来) 然后我们直接开始分析题目,因为这道题需要求无向连通图的方案数,这道题似乎也不是一个结论题, \(wch\) 决定去找找规律,是不是 \(n\) 和 \(n-1\) 有什么关系,但是 $wch $ 发现他打不出表. 然后 $wch $ 想到…
题目链接: http://poj.org/problem?id=1737 题意: 求 \(n\) 个点的无向简单(无重边无自环)连通图的个数.\((n<=50)\) 题解: 这题你甚至能OEIS. http://oeis.org/A001187 但不支持这样做.TAT 间接做. 总方案数减去不合法方案. 因为\(n\)个点的完全图有 \(C(n,2)={n(n-1) \over 2}\) 条边,显然就有 \(2^{C(n,2)}\) 种子图,即枚举每条边是否选择. 设$ f[i]$ 表示每个点都…