在<统计学习方法>这本书中,附录部分介绍了牛顿法在解决无约束优化问题中的应用和发展,强烈推荐一个优秀博客. https://blog.csdn.net/itplus/article/details/21896453…
排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 1. 批量梯度下降法BGD 批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新…
  本文是读完 Jeffrey Dean, Greg S. Corrado 等人的文章 Large Scale Distributed Deep Networks (2012) 后的一则读书笔记,重点介绍在 Google 的软件框架 DistBelief 下设计的一种用来训练大规模深度神经网络的随机梯度下降法 - Downpour SGD.该方法通过分布式地部署多个模型副本和一个"參数server",同一时候实现了模型并行和数据并行.且对机器失效问题具有非常好的容错性.结合 Adagr…
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向:      如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法.梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解.一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的.梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下…
一直记不住这些算法的推导,所以打算详细点写到博客中以后不记得就翻阅自己的笔记. 泰勒展开式 最初的泰勒展开式,若  在包含  的某开区间(a,b)内具有直到n+1阶的导数,则当x∈(a,b)时,有: 令可得到如下式子: 泰勒展开式,我的理解就有两个式子.上述的是当x是标量时的展开式,当x是多元时可以根据以下公式进行推导: 舍去二阶项以上的项可以得到: 参考文献: 1. http://baike.baidu.com/link?url=E-D1MzRCjDi8qrlh2Cn64fwtz703bg-h…
转载  https://blog.csdn.net/itchosen/article/details/77200322 各种神经网络优化算法:从梯度下降到Adam方法     在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法. 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x). 模型内部有些参数…
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 一般线性回归函数的假设函数为: $h_{\theta}=\sum_{j=0}^{n}\theta_{j}x_{j}$ 对应的能量函数(损失函数)形式为: $J_{train}(\theta)=1/(2m)\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2}$…
https://www.cnblogs.com/maybe2030/p/5089753.html 阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. 总结 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 一般线性回归函数的假设函数为: hθ=∑nj=0θjxjhθ=∑j=0nθjxj 对应的能量…
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 一般线性回归函数的假设函数为: 对应的损失函数为: 下图为一个二维参数(θ0和θ1)组对应能量函数的可视化图: 1.批量梯度下降法BGD 批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新. 我…
1.梯度下降法 2.牛顿法 3.高斯牛顿法 4.LM算法…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
BP(Back Propagation)网络是1985年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer)…
Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题.本文为阅读作者 Yoshimasa Tsuruoka, Jun’chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descent Train…
梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”.越接近目标值时,步长越小,下降越慢. 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解.(当损失函数是凸函数时,梯度下降得到的解一定是全局最优解,因为凸函数的极小值即为最小值) 梯度下降法 批量梯度下降法(Batch Gradient Descent,BGD):在更新参数时,BGD根据batch中的所有样本对参数进行更新. θ为参数,…
常用的梯度下降法分为: 批量梯度下降法(Batch Gradient Descent) 随机梯度下降法(Stochastic Gradient Descent) 小批量梯度下降法(Mini-Batch Gradient Descent) 简单的算法示例 数据 x = np.random.uniform(-3,3,100) X = x.reshape(-1,1) y = x * 2 + 5 + np.random.normal(0, 1, 100) BGD 批量梯度下降法的简单实现: def gr…
梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底.为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示: 懒得画图了直接用这个展示一下.在二维图中,梯度就相当于凸函数切线的斜率,横坐标就是每次迭代的参数,纵坐标是目标函数的取值.每次迭代的过程…
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权…
  梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.   为了便于理解,这里我们将使用只含有一个特征的线性回归来展开.此时线性回归的假设函数为: \[ h_{\theta…
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-05-09 15:03:50 # @Author : whb (whb@bupt.edu.cn) # @Link : ${link} # @Version : $Id$ import numpy a…
BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小)    Mold 一直在更新 SGD(Stochastic gradientdescent)随机梯度下降法:每次迭代使用一组样本(样本量大)Mold 把一批数据过完才更新一次 针对BGD算法训练速度过慢的缺点,提出了SGD算法,普通的BGD算法是每次迭代把所有样本都过一遍,每训练一组样本就把梯度更新一次.而SGD算法是从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样…
一.回归函数及目标函数 以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式. 二.优化方式(Gradient Descent) 1.最速梯度下降法 也叫批量梯度下降法Batch Gradient Descent,BSD a.对目标函数求导 b.沿导数相反方向移动theta 原因: (1)对于目标函数,theta的移动量应当如下,其中a为步长,p为方向向量. (2)对J(theta)做一阶泰勒级数展开: (3)上式中,ak是步长,为正数,可知要使得目标函数变小,则应当<0,并且其…
方向导数和梯度的直观理解,from知乎-马同学: https://www.zhihu.com/question/36301367 BGD,SGD: https://www.cnblogs.com/guoyaohua/p/8542554.html…
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是说x方向上的偏导是 0.4 往y方向走1米,高度上升0.3米,也就是说y方向上的偏导是 0.3 这样梯度方向就是 (0.4 , 0.3),也就是往这个方向走1米,所上升的高度最高. (1*0.4/0.5)*0.4 +(1*0.3…
梯度下降法 在机器学习任务中,需要最小化损失函数\(L(\theta)\),其中\(\theta\)是要求解的模型参数.梯度下降法是一种迭代方法,用到损失函数的一阶泰勒展开.选取初值\(\theta ^0\),不断迭代更新\(\theta\)的值,进行损失函数的极小化. 迭代公式: \(\theta^t=\theta^{t-1}+\Delta\theta\) \(L(\theta^t)\)在\(\theta^{t-1}\)处进行一阶泰勒展开,有: \begin{aligned} L(\theta…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
在机器学习算法中,为了优化损失函数loss function ,我们往往采用梯度下降算法来进行优化.举个例子: 线性SVM的得分函数和损失函数分别为:                                       一般来说,我们是需要求损失函数的最小值,而损失函数是关于权值矩阵的函数.为了求解权值矩阵,我们一般采用数值求解的方法,但是为什么是梯度呢? 在CS231N课程中给出了解释,首先我们采用 策略1:随机搜寻(不太实用),也就是在一个范围内,任意选择W的值带入到损失函数中,那个…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 这一周的内容是机器学习介绍和梯度下降法.作为入…
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度上升法. 本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导:概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码). 1 最优化问题 最优化问题是求解函数极值的问题,…
样本文件下载:ex2Data.zip ex2x.dat文件中是一些2-8岁孩子的年龄. ex2y.dat文件中是这些孩子相对应的体重. 我们尝试用批量梯度下降法,随机梯度下降法和小批量梯度下降法来对这些数据进行线性回归,线性回归原理在:http://www.cnblogs.com/mikewolf2002/p/7560748.html 1.批量梯度下降法(BGD) BGD.m代码: clear all; close all; clc; x = load('ex2x.dat'); %装入样本输入特…
梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来).梯度下降法特点:越接近目标值,步长越小,下降速度越慢.直观上来看如下图所示: 这里每一个圈代表一个函数梯度,最中心表示函数极值点,每次迭代根据当前位置求得的梯度(用于确定搜索方向以及与步长共同决定前进速度)和…