Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop  Paper : https://arxiv.org/pdf/1611.03718v1.pdf Project Page : https://github.com/imatge-upc/detection-2016-nipsws  摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Object  De…
论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体. Problem formulation: Given an image, determine the most influential item in the scene in terms of region of i…
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主页上,更是许多关于此的paper,基本都发在ICML,AAAI,IJCAI等各种人工智能,机器学习的牛会顶刊,甚至是Nature,可以参考其官方publication page: https://www.deepmind.com/publicatio…
Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在动物行为上,深入到心理和神经科学的角度,关于在一个环境中如何使得 agent 优化他们的控制,提供了一个正式的规范.为了利用RL成功的接近现实世界的复杂度的环境中,然而,agents 遇到了一个难题:他们必须从高维感知输入中得到环境的有效表示,然后利用这些来将过去的经验应用到新的场景中去.显著地,人…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方法,利用强化学习的方法,直接从高维的感知输入中学习控制策略.模型是一个卷积神经网络,利用 Q-learning的一个变种来进行训练,输入是原始像素,输出是预测将来的奖励的 value function.将此方法应用到 Atari 2600 games 上来,进行测试,发现在所有游戏中都比之前的方法有效,甚至在…
相关链接 论文地址:https://arxiv.org/abs/1904.08189 代码链接:https://github.com/Duankaiwen/CenterNet 概述 CenterNet由中科院.牛津大学和华为诺亚方舟实验室联合提出,发展了以CornerNet为代表的基于关键点的目标检测方法.其主要思想在于,利用关键点的三元组(中心点.左上角点和右下角点)来确定一个目标,有效利用了目标内部信息.为了更好地提取中心点和角点特征,作者提出了center pooling和cascade…
论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf 概述 STDN是收录于CVPR 2018的一篇目标检测论文,提出STDN网络用于提升多尺度目标的检测效果.要点包括:(1)使用DenseNet-169作为基础网络提取特征:(2)提出Scale-transfer Layer,在几乎不增加参数量和计算量的情况下…
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Learning. The goal of this work is to build a simulation platform that can insert the Deep Reinforcement Learning algorithms as a robot motion planning…
Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov 引用: Erhan, Dumitru, et al. "Scalable object detection using deep neural networks." Proceedings of the IEEE Confere…