[BZOJ5427]最长上升子序列/[BZOJ4282]慎二的随机数列 题目大意: 给你一个长度为\(n(n\le10^5)\)的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使得最长上升子序列最长.求最长长度. 思路: 一定存在一种最优方案使得不确定的都选上(考虑新选上一个不确定的数,最多会使一个已确定的数失效),因此令\(a_i=a_i-cnt\)(\(cnt\)为之前不确定的数的个数),求LIS后加上\(cnt\)即可. 源代码: #include<cstdio>…
慎二的随机数列 bzoj-4282 题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择.问最长上升子序列. 注释:$1\le n\le 10^5$. 想法:结论:逢N必选.N是可以任意选择的位置. 具体的,我们将所有N踢出序列,将给定的权值-=前面N的个数.再在当前序列上求最长上升子序列. 正确性的话如果当前序列中的数: 如果前面的数小于后面的数,显然中间的N我也可以加上. 如果前面的数大于后面的数: 如果前面的数在原序列中的权值大于后面的数在原序列中的权值,那么这两个数…
海带头又上线了QwQ~ 这是一个奇怪的lis问题 显然一定存在一种最优答案使所有辨认不清的数都在答案中. [为什么呢]因为你完全可以用一个'N'来替换一个'K'啊QwQ~ 那么在选完所有'N'之后,一个为'K'的数的值val[i]就可以理解为val[i]-num,num指它之前'N'的个数(因为是严格单调增的) 然后就是裸的lis啦~,记得答案要加上'N'的个数. #include<iostream> #include<algorithm> #include<cstdio&g…
首先在开头加上-inf,结尾加上inf,最后答案减2即可. 设s[i]为i之前未知的个数,f[i]为以i结尾的LIS,且a[i]已知,那么: f[i]=max(f[j]+min(s[i]-s[j],a[i]-a[j]-1))+1,其中j<i,a[j]<a[i]且a[j]已知 将min分类讨论后可转化为三维偏序,CDQ分治+扫描线+树状数组即可,时间复杂度$O(n\log^2n)$. #include<cstdio> #include<algorithm> using s…
首先,我们不难发现N个位置都选一定不会比少选任意几个差,所以我们就先设定我们将这N个修改机会都用上, 那么如果点 i">ii 前有sumv">sumvsumv个可修改点要被选的话,当前点被选择的条件是减掉sumv">sumvsumv后依然能和前面已减掉过sumv">sumvsumv的进行匹配. Code: #include<cstring> #include<cstdio> #include<algorithm&…
[BZOJ4282]慎二的随机数列 Description 间桐慎二是间桐家著名的废柴,有一天,他在学校随机了一组随机数列, 准备使用他那强大的人工智能求出其最长上升子序列,但是天有不测风云,人有旦夕祸福,柳洞一成路过时把间桐慎二的水杯打翻了…… 现在给你一个长度为 n 的整数序列,其中有一些数已经模糊不清了,现在请你任意确定这些整数的值,使得最长上升子序列最长(为何最长呢?因为间桐慎二向来对自己的人品很有信心) . Input 第一行一个正整数 n. 接下来 n 行,第 i 行若为“K x”…
扯几句题外的,最近在看Fate/StayNight,对此人毫无好感…… 每次减一下当前可辨认数,然后随意dp一个LIS,最后记得加回去就好. #include<bits/stdc++.h> #define N 100010 using namespace std; int q[N],s[N],dp[N],sum,n,top,t,x; int main(){ scanf("%d",&n); ;i<=n;i++){ scanf("%s",s);…
题解: 网上题解还没看 我的方法是用平衡树维护一个单调栈 由于N用了一定是赚的 所以它的作用是让f[i+1]=f[i]+1 这个是可以记录的 就跟noip蚯蚓那题一样 然后插入一个值的时候查询前面的最大值再比较一下做修改就可以了 明天写下看看正确性…
考虑O(n log n)的LIS求法,dp[i]表示到目前为止,长度为i的LIS的末尾最小是多少. 当当前数确定时直接用LIS的求法更新dp数组,当不确定时,由于这个数可以是任意数,所以可以接在任意上升子序列后面,于是相当于所有dp[i]=min(dp[i],dp[i-1]+1),也就是整个数组+1后右移一位.这个记录一个增量即可,复杂度与普通LIS一样. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (in…
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/2788/pid/2080 传送门: https://blog.csdn.net/sunshine_pb/article/details/21820159 设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk}, 记:    Xk为序列X中前k…
1807: 最长上升子序列~ Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 17[Submit][Status][Web Board] Description Bobo 在 ICPCCamp 学会了解决最长上升子序列问题后得到了一个长度为 n 的数列 p1,p2,…,pn. Bobo 想用 1,2,…,n 来替换其中值为 0 的元素,使得 p1,p2,…,pn 互不相同(即 p1,p2,…,pn 是 {1,2,…,n} 的…
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20885 题意: 求二维最长严格递增子序列. 题解: O(n^2)的算法很好想,不过这里会t掉,只能O(nlogn) 于是用二分来维护: 先把所有的数按x递增排序,x相同的按y递减排序(这里之所以要按y递减排序是因为为了写代码方便,递减的话你后面基本就只要考虑y的大小,如果不递减,你还要考虑x的大小的,具体的可以自己思考一下) 排完序之后我们接下来就只考虑y的大小…
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5427 因为noip,博客咕了好久,这几天集中填一下坑. 这题我们可以假设往不确定的空位里填数,然后考虑一下如何尽可能让空位多被选上.我们发现,如果有一个空位没在最后的最长上升子序列里,那么可以贪心地去掉一个被选上的数再加上去. 那么我们假定所有的空位都被选上.这样原序列就被划分成了许多段,而每一段内的在最长上升子序列里的数都必须与两边相差至少2(留一个数给空位).那么我们可以把每一段…
想了挺久到底第一篇在这儿的博客写什么好,刚好这两天又一次看到动态规划的LCS算法觉得还是有点意思的,就拿来写了写,第一篇博客就发它吧. #include<iostream> #include<iomanip> using namespace std; //tag标志,0为左斜上,1取左,2取上;count为最长公共子序列计数 //计算最长公共子序列长度 void LCS_Length(char *X, char *Y, int *count[],int *tag[],int len…
题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence/ [300. 最长递增子序列]https://leetcode-cn.com/problems/longest-increasing-subsequence/ 这两个都是DP的经典题目,674比较简单. 代码: class Solution { public int findLength…
1.两个子序列:X={x1,x2....xm},Y={y1,y2....yn},设Z={z1,z2...zk}. 2.最优子结构: 1)如果xm=yn ,则zk=xm=yn且Zk-1是Xm-1和Yn-1的一个LCS. 2)如果xm!=yn ,则zk!=xm包含Z是Xm-1和Y的一个LCS. 3)如果xm!=yn ,则zk!=yn包含Z是X和Yn-1的一个LCS. 3.则由最优子结构可得递归式:…
caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2)初始化问题.         一般设f[i][j]为第一个字符前i个,第二个字符前j个的最优价值          f[0][0] = 0           然后要初始化f[i][0], f[0][i]      这个时候要根据题意.       …
最长上升子序列解决问题: 有N个数,求出它最长的上升子序列并输出长度. 在题里不会讲的这么直白,这个算法往往会与其他的算法混在一起使用. 在这篇文章中不会出现其他的例题,为了让大家更好的理解,我只会对模板进行讲解.(谢谢大家的理解) 1-朴素算法(时间复杂度炒鸡炒鸡高) 首先,我们先列出一些无序的数进行观察,例如:1 7 4 2 3 6 8 9 (共8个数). 我们通过观察很快可以发现在这个序列中最长的上升序列时1,2,3,6,8,9,长度为6,我们可以把每种情况都遍历一遍,我们现在从1开始,当…
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对于算法导论的版本,增加了一个多分支回溯,即存储回溯方向时出现了向上向左都可以的情况时,这时候就代表可能有多个最长公共子序列.当回溯到这里时,让程序带着存储已经回溯的字符串的栈进行递归求解,当走到左上角的时候输出出来 # coding=utf-8 class LCS(): def input(self…
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列.最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个.子串是要求更严格的一种子序列,要求在母串中连续地出现.在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公…
public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common substring. */ public int longestCommonSubsequence(String A, String B) { int lenA = A.length(); int lenB = B.length(); if(lenA==0 || lenB==0){ return 0;…
先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,LCS):不必连续   实在是汗颜,网上做一道题半天没进展: 给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串.如何删除才能使得回文串最长呢?输出需要删除的字符个数. 首先是自己大致上能明白应该用动态规划的思想否则算法复杂度必然过大.可是对于回文串很难找到其状态和状态转移方程,换句话…
一些概念: (1)子序列: 一个序列A = a1,a2,--an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列.例如:   对序列 1,3,5,4,2,6,8,7来说,序列3,4,8,7 是它的一个子序列.对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列. 请注意:子序列不是子集,它和原始序列的元素顺序是相关的. (2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它为…
这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序列的要求满足其中字符的顺序和字母在两个序列中都必须相同,任意输出一个符合题意的子序列 首先是最基本的最长公共子序列的状态转移问题: 这里的maxLen[i][j]数组的意思就是保存s1的前 i 个字符和s2的前 j 个字符匹配的状态. 举个例子:maxLen[3][6]即表明在s1的前3个字符和s2…
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. 既然是动态规划,难点肯定是在转移方程那了.首先我们用一张网上流传的图: 我个人觉得这张图最好的阐述了这个问题的解法.下面说一下我的理解:首先我们要考虑怎么表示LCS中的各个状态,这个知道的可能觉得很…
1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. (1)递归方法求最长公共子序列的长度 1)设有字符串a[0...n],b[0...m],下面就是递推公式. 当数组a和b对应位置字符相同时,则直接求解下一个位置:当不同时取两种情况中的较大数值. 2)代码如下: #include<stdio.h> #include<string.h> char a[30],b[30]; int…
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式,逐步比对,若相同则对应参考值自增,同时记录当前时刻最大参考值,及其位置.最后输出多组结果. 源码:lcs.cpp #include "stdafx.h" #include <stdio.h> #include <vector> /*****************…
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://blog.chinaunix.net/uid-26548237-id-3757779.html 代码: #include <iostream> using namespace std; int LIS_nlogn(int *arr, int len) { int *LIS = new int[len…
一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm.求最大的m值.   二,算法:动态规划法:O(n^2) 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj…
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就是序列A和B的最长公共子序列LCS,即LIS(A) = LCS(A,B).时间复杂度为n^2. 思路二:动态规划.时间复杂度为n^2,可以进一步优化为n^lgn. [代码]  C++ Code  1234567891011121314151617181920212223242526272829303…