『C++』基础知识点】的更多相关文章

一.基础知识 1.C++编译流程 以Unix系统编译中间文件为说明: .cpp—(编译预处理)—>.ii—(编译)—>.s—(汇编)—>.o—(ld,连接)—>.out 2.#include 作用于编译预处理阶段,将被include文件抄送在include所在位置,并会在相应位置写出调用栈,生成中间文件.ii,该中间文件可读 include文件加引号表示先从当前目录寻找索引,加尖括号表示从编译器指定根目录索引,Unix默认为"~//usr/include"目录…
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础RNN网络回归问题 『TensotFlow』深层循环神经网络 『TensotFlow』LSTM古诗生成任务总结 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵…
往期RNN相关工程实践文章 『TensotFlow』基础RNN网络分类问题 『TensotFlow』RNN中文文本_上 『TensotFlow』基础RNN网络回归问题 『TensotFlow』RNN中文文本_下_暨研究生开学感想 张量分析 预处理结果是二维数据,相当于batch条一维数据,每个数据对应一首诗,每个字是一个scalar: embedding之后,将每个字映射为一个rnn_size大小的向量,数据变为三维: 经过递归神经网络,输出维度不变: 将之调整为二维数据,这里面第二维度(即每一…
关于『HTML』:第一弹 建议缩放90%食用 根据C2024XSC212童鞋的提问, 我准备写一稿关于『HTML』基础的帖 But! 当我看到了C2024XSC130的 "关于『HTML5』『CSS3』"后 猛然发现 我的代码居然 不! 符! 合! 标! 准! 了! 呜呜呜  (暴风哭泣)   我的风格突然就又双叒叕过时了 要是不能用,我岂不是误人子弟,残害祖国花朵 ... ... But! 经过我的亲自验证(拿OJ做实验) 发现 旧版HTML的代码格式还是可以用哒~[但你还是过时了(…
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range(1000): W = np.random.randn(10, 3073) * 0.0001 loss = L(X_train, Y_train, W) if loss < bestloss: bestloss = loss bestW = W scores = bsetW.dot(Xte_cols…
关于『Markdown』:第一弹 建议缩放90%食用 声明: 在我之前已有数位大佬发布 "Markdown" 的语法知识点, 在此, 仅整理归类以及补缺, 方便阅读. 感谢 C2024XSC212 童鞋,感谢这位大佬对本文提出的建议,让大家都能使用到更严谨的文章(再次感谢大佬) 话说回来,终于煲完了"HTML基础系列" (那有没有进阶系列呢?) 进阶系列的话大概率不会有了, 毕竟HTML4.01已经淡出了大众视野 啊, 当然假如我学会了HTML5难一点的部分, 进阶…
[原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 joinlidong 发表于 2014-11-29 14:25:50 https://www.itsk.com/thread-341565-1-4.html [原创] [2014.12.02更新网盘链接]基于EasySysprep4.1的 Windows 7 x86/x64 『视频』封装 上周末开始做的,结果没做完,零零散散通过视频拼接,每天录一点点,今天终于制作好…
『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0], # 想要 normalize 的维度, [0] 代表 batch 维度 # 如果是图像数据, 可以传入 [0, 1, 2], 相当于求[batch, height, width] 的均值/方差, 注意不要加入 channel 维度 ) scale = tf.Variable(tf.ones([o…
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该函数的定义如下所示 def gradients(ys, xs, grad_ys=None, name="gradients", colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)…