线性、逻辑回归的java实现】的更多相关文章

线性回归和逻辑回归的实现大体一致,将其抽象出一个抽象类Regression,包含整体流程,其中有三个抽象函数,将在线性回归和逻辑回归中重写. 将样本设为Sample类,其中采用数组作为特征的存储形式. 1. 样本类Sample public class Sample { double[] features; int feaNum; // the number of sample's features double value; // value of sample in regression i…
MNIST 被喻为深度学习中的Hello World示例,由Yann LeCun等大神组织收集的一个手写数字的数据集,有60000个训练集和10000个验证集,是个非常适合初学者入门的训练集.这个网站也提供了业界对这个数据集的各种算法的尝试结果,也能看出机器学习的算法的演进史,从早期的线性逻辑回归到K-means,再到两层神经网络,到多层神经网络,再到最近的卷积神经网络,随着的算法模型的改善,错误率也不断下降,所以目前这个数据集的错误率已经可以控制在0.2%左右,基本和人类识别的能力相当了. 这…
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8D%AE.zip 概念 代价函数关于参数的偏导 梯度下降法最终的推导公式如下 多分类问题可以转为2分类问题 正则化处理可以防止过拟合,下面是正则化后的代价函数和求导后的式子 正确率和召回率F1指标 我们希望自己预测的结果希望更准确那么查准率就更高,如果希望更获得更多数量的正确结果,那么查全率更重要,…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…
代码: # -*- coding: utf-8 -*- """ Created on Tue Jul 17 10:13:20 2018 @author: zhen """ from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC import mglearn import matplotlib.pyplot as plt x, y =…
from :https://www.zhihu.com/question/29385169/answer/44177582 逻辑回归的模型引入了sigmoid函数映射,是非线性模型,但本质上又是一个线性回归模型,因为除去sigmoid映射函数关系,其他的步骤,算法都是线性回归的.可以说,逻辑回归,都是以线性回归为理论支持的.这里讲到的线性,是说模型关于系数一定是线性形式的加入sigmoid映射后,变成: 如果分类平面本身就是线性的,那么逻辑回归关于特征变量x,以及关于系数都是线性的如果分类平面是…
本讲主要说下逻辑回归的相关问题和详细的实现方法 1. 什么是逻辑回归 逻辑回归是线性回归的一种,那么什么是回归,什么是线性回归 回归指的是公式已知,对公式中的未知參数进行预计,注意公式必须是已知的,否则是没有办法进行回归的 线性回归指的是回归中的公式是一次的,比如z=ax+by 逻辑回归事实上就是在线性回归的基础上套了一个sigmoid函数,详细的样子例如以下 2. 正则化项 引入正则化项的目的是防止模型过拟合,函数对样本的拟合有三种结果 欠拟合:直观的理解就是在训练集上的误差比較大,拟合出来的…
最小二乘线性回归,感知机,逻辑回归的比较:   最小二乘线性回归 Least Squares Linear Regression 感知机 Perceptron 二分类逻辑回归 Binary Logistic Regression 多分类逻辑回归 Multinomial Logistic Regression 特征x x=([x1,x2,...,xn,1])T 权重w w=([w1,w2,...,wn,b])T 目标y 实数(负无穷大到正无穷大) 两个类别 1,-1 两个类别 0,1 多个类别 c…
在说逻辑回归前,还是得提一提他的兄弟,线性回归.在某些地方,逻辑回归算法和线性回归算法是类似的.但它和线性回归最大的不同在于,逻辑回归是作用是分类的. 还记得之前说的吗,线性回归其实就是求出一条拟合空间中所有点的线.逻辑回归的本质其实也和线性回归一样,但它加了一个步骤,逻辑回归使用sigmoid函数转换线性回归的输出以返回概率值,然后可以将概率值映射到两个或更多个离散类. 如果给出学生的成绩,比较线性回归和逻辑回归的不同如下: 线性回归可以帮助我们以0-100的等级预测学生的测试分数.线性回归预…
逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的干扰,条件的描述的不够完全,所以可能不确定正确,还希望得到一个概率,比如有病的概率是80%.也即P(Y|X),对于输入X,产生Y的概率,Y可取两类,1或者0. 推导 Sigmod函数 相当于线性模型的计算结果来逼近真实01标记的对数几率. 他的导数: 对数线性模型 概率P的值域是[0,1],线性函数…