SVM数学原理推导&鸢尾花实例】的更多相关文章

//看了多少遍SVM的数学原理讲解,就是不懂,对偶形式推导也是不懂,看来我真的是不太适合学数学啊,这是面试前最后一次认真的看,并且使用了sklearn包中的SVM来进行实现了一个鸢尾花分类的实例,进行进一步的理解. 1.鸢尾花分类实例 转自:https://www.cnblogs.com/luyaoblog/p/6775342.html 数据集: 特点:每个属性及标记之间使用逗号进行隔开. #encoding:utf-8 from sklearn import svm import numpy…
//2019.08.17 #支撑向量机SVM(Support Vector Machine)1.支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的. 2.支撑向量机SVM有两种:Hard Margin SVM和Soft Margin SVM,对于第一种严格的支撑向量机算法主要解决的是线性可分的数据问题,而第二种SVM是在第一种的基础上改进而来,可以解决普遍的数据问题,对于问题的线性可…
PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥:可视化等2.主成分分析法的数学原理主要是利用梯度上升法来最优化目标函数,即利用梯度上升法来求取效用函数的最大值,其具体的数学原理推导过程如下所示: 对于以上的函数,因为梯度的向量化表示我们已经求得,因此,我们便可以通过梯度上升法求取函数的…
引言: 最近一直在学习主成分分析(PCA),所以想把最近学的一点知识整理一下,如果有不对的还请大家帮忙指正,共同学习. 首先我们知道当数据维度太大时,我们通常需要进行降维处理,降维处理的方式有很多种,PCA主成分分析法是一种常用的一种降维手段,它主要是基于方差来提取最有价值的信息,虽然降维之后我们并不知道每一维度的数据代表什么意义,但是它将主要的信息成分保留了下来,那么PCA是如何实现的呢? 本文详细推导了PCA的数学原理,最后以实例进行演算. PCA的数学原理 (一)降维问题 大家都知道,PC…
工作原理 基于集成算法的多个树累加, 可以理解为是弱分类器的提升模型 公式表达 基本公式 目标函数 目标函数这里加入了损失函数计算 这里的公式是用的均方误差方式来计算 最优函数解 要对所有的样本的损失值的期望, 求解最小的程度作为最优解 集成算法表示 集成算法中对所有的树进行累加处理 公式流程分解 每加一棵树都应该在之前基础上有一个提升 损失函数 叶子节点惩罚项 损失函数加入到基本公式目标函数中 多余出来的常数项就用 c 表示即可 目标函数推导 如上图. 三个树, 真实值 1000 , 第一棵树…
一直很好奇机器学习实战中的SVM优化部分的数学运算式是如何得出的,如何转化成了含有内积的运算式,今天上了一节课有了让我很深的启发,也明白了数学表达式推导的全过程. 对于一个SVM问题,优化的关键在于 KKT理论所标明的是在拉格朗日乘数法中引入的系数与上面的不等式约束条件的乘积等于0始终成立,这个条件所保证的是优化问题的解存在,对于上面的优化,从线性空间的角度来思考就是在做最大化最小间隔,是一个非常明显的二次优化问题.本身分析到这里,还不足以说明问题,为何会出现含有内积的运算式呢. 从这个拉格朗日…
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 假设你对PCA的推导和概念还不是非常清楚.建议阅读本文的前导文章 http://blog.csdn.net/baimafujinji/article/details/50372906 6.4.3 主成分变换的实现 本小节通过一个算例验证一下之前的推导.在前面给出的…
本文的理论部分大量参考<word2vec中的数学原理详解>,按照我这种初学者方便理解的顺序重新编排.重新叙述.题图来自siegfang的博客.我提出的Java方案基于kojisekig,我们还在跟进准确率的问题. 背景 语言模型 在统计自然语言处理中,语言模型指的是计算一个句子的概率模型. 传统的语言模型中词的表示是原始的.面向字符串的.两个语义相似的词的字符串可能完全不同,比如“番茄”和“西红柿”.这给所有NLP任务都带来了挑战——字符串本身无法储存语义信息.该挑战突出表现在模型的平滑问题上…
如果要得到pose视图,除非有精密的测量方法,否则进行大量的样本采集时很耗时耗力的.可以采取一些取巧的方法,正如A Survey on Partial of 3d shapes,描述的,可以利用已得到的3D模型,利用投影的方法 (page10-透视投影或者正射投影),自动得到精确的3D单向视图. 其中的遇到了好几个难题:透视投影的视角问题:单侧面的曲面补全问题(曲面插值问题):pose特征的描述性问题. 一篇文章看完视觉及相关通略. 先普及一下基础知识: 一:图像处理.计算机图形学.计算机视觉和…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
网上,书上有很多的关于SVM的资料,但是我觉得一些细节的地方并没有讲的太清楚,下面是我对SVM的整个数学原理的推导过程,其中我理解的地方力求每一步都是有理有据,希望和大家讨论分享. 首先说明,目前我的SVM的数学原理还没有过多的学习核函数,所以下面的整理都不涉及到核函数.而且因为很多地方我还没理解太透,所以目前我整理的部分主要分为: ①最大间隔分类器,其中包括优化目标的一步步推导,还有关于拉格朗日函数,KKT条件,以及对偶问题等数学优化的知识 ②软间隔优化形式,即加入了松弛变量的优化目标的一步步…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
第二部分:转化为对偶问题进一步简化 这一部分涉及的数学原理特别多.如果有逻辑错误希望可以指出来. 上一部分得到了最大间隔分类器的基本形式:   其中i=1,2,3...m 直接求的话一看就很复杂,我们还需要进一步简化. 这里就需要介绍拉格朗日乘子法.介绍它还是从最最简单的形式说起: 一.关于优化问题的最基本的介绍 优化问题这里面有很多东西,我先给出参考过的资料有,可以先看看这些资料自己总结一下,因为我觉得这部分内容很多人总结的都很好了: ①<支持向量机导论>的第五章最优化理论 ②刚买的<…
网上,书上有很多的关于SVM的资料,但是我觉得一些细节的地方并没有讲的太清楚,下面是我对SVM的整个数学原理的推导过程,其中逻辑的推导力求每一步都是有理有据.现在整理出来和大家讨论分享. 因为目前我的SVM的数学原理还没有过多的学习核函数,所以下面的整理都不涉及到核函数.而且因为很多地方我还没理解太透,所以目前我整理的部分主要分为: ①最大间隔分类器,其中包括优化目标的一步步推导,还有关于拉格朗日函数,KKT条件,以及对偶问题等数学优化的知识 ②软间隔优化形式,即加入了松弛变量的优化目标的一步步…
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 阅读本文须要最主要的线性代数知识和概率论基础:) 6.4.2 主成分变换的推导 前面提到的一国经济增长与城市化水平关系的问题是典型二维问题,而协方差也仅仅能处理二维问题.那维数多了自然就须要计算多个协方差.所以自然会想到使用矩阵来组织这些数据.为了帮助读者理解上面…
PCA的数学原理 前言 数据的向量表示及降维问题 向量的表示及基变换 内积与投影 基 基变换的矩阵表示 协方差矩阵及优化目标 方差 协方差 协方差矩阵 协方差矩阵对角化 算法及实例 PCA算法 实例 进一步讨论 前言 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中…
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hac…
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle::CS_ORBIT”. b.键盘WSAD键移动镜头,鼠标拖拽改变镜头方向,类似于OGRE中的“OgreBites::CameraStyle::CS_FREELOOK”. 1.坐标变换的一个例子,两种思路理解多个变换的叠加 现在考虑Scale(1,2,1); Transtale(2,1,0); Rot…
word2vec 是 Google 于 2013 年推出的一个用于获取词向量的开源工具包.我们在项目中多次使用到它,但囿于时间关系,一直没仔细探究其背后的原理. 网络上 <word2vec 中的数学原理详解> 有一系列的博文,对这个问题已经做了很好的阐述.作者十分用心,从最基础的预备知识.背景知识讲起,这样读者就不用到处找相关资料了. 这里,我就把其博文链接直接搬运过来: (一)目录和前言 (二)预备知识 (三)背景知识 (四)基于 Hierarchical Softmax 的模型 (五)基于…
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在我没有学习接触机器学习之前,我就已经听说了SVM这个机器学习的方法.SVM自它诞生以来就以优秀的分类性能牢牢占据了霸主地位. 2. SVM原理 支持向量机(Support Vector Machine, SVM)的基本模型是在特征空…
Svm算法又称为支持向量机,是一种有监督的学习分类算法,目的是为了找到两个支持点,用来使得平面到达这两个支持点的距离最近. 通俗的说:找到一条直线,使得离该线最近的点与该线的距离最远. 我使用手写进行了推导 求解实例 软间隔,通过设置C,使得目标函数的松弛因子发生变化,松弛因子越大,表示分类越不严格 高斯核变化做映射,指的是把低维转换成高维,解决低维不可分的情况…
  模拟上帝之手的对抗博弈——GAN背后的数学原理 简介 深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度.从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式模型.判别式模型通常是将高维度的可感知的输入信号映射到类别标签.训练判别式模型得益于反向传播算法.dropout和具有良好梯度定义的分段线性单元.然而,深度产生式模型相比之下逊色很多.这是由于极大似然的联合概率密度通常是难解的,逼近这样的概率密度函数非常困难,而且很难将分段线性单元的优势应用到产生式…
什么是BP网络 BP网络的数学原理 BP网络算法实现 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/44514073  上一篇文章介绍了KNN分类器,当时说了其分类效果不是很出色但是比较稳定,本文后面将利用BP网络同样对Iris数据进行分类. 可以结合下面这几篇文章一起看: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html http://www.cnblogs…
一.Hard Margin SVM SVM 的思想,最终用数学表达出来,就是在优化一个有条件的目标函数: 此为 Hard Margin SVM,一切的前提都是样本类型线性可分: 1)思想 SVM 算法的本质就是最大化 margin: margin = 2d,SVM 要最大化 margin,也就是要最大化 d,所以只要找到 d 的表达式,也能解决相应的问题: 2)特征空间中样本点到决策边界的距离 二维平面中: n 维空间中: 此处 n 维空间并不是 3 维的立体空间,而是指 n 个方面,或 n 个…
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1                                                                             图2 如上图1所示,向量OA的坐标表示为(3,2),A点的横坐标实为向量OA与单位向量(1,0)的内积得到的(也就是向量OA在单位向量(1,0)所表示的的方向上的投影的长度,正负由向量OA与投影方向的夹角决定),纵坐标同理可得.而降维的过程从几何的角度去理解,实质就可…
RSA加密数学原理 */--> *///--> *///--> UP | HOME RSA加密数学原理 Table of Contents 1 引言 2 RSA加密解密过程 2.1 加密 2.2 解密 3 收尾 1 引言 RSA加密算法,即是目前最有影响力的咬钥加密算法, 他能够抵抗到目前为止已知的绝大多数密码攻击, 已被ISO推荐为公钥数据加密标准. 该算法基于一个十分简单的数论事实: 将两个大素数乘十分容易, 但相要对乘积进行因式分解却极其困难, 因此可以将乘积公开作为加密密钥. (…
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的…
非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法. 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术. 题外话: 并博客一直有打算写一系列文章通俗的密码学,昨天给站点上https, 因其中使用了RSA算法,就查了一下,发现现在网上介绍RSA算法的文章…
数学原理参考:https://blog.csdn.net/aiaiai010101/article/details/72744713 实现过程参考:https://www.cnblogs.com/eczhou/p/5435425.html 两篇博文都写的透彻明白. 自己用python实现了一下,有几点疑问,主要是因为对基变换和坐标变换理解不深. 先附上代码和实验结果: code: from numpy import * import numpy as np import matplotlib.p…