870 斐波那契进阶 题目链接:https://buaacoding.cn/problem/870/index 思路 通过读题就可以发现这不是一般的求斐波那契数列,所以用数组存下所有的答案是不现实的.题目也明确点明此题可以利用矩阵的计算解题. 如果你稍微百度一下你会了解到快速矩阵幂的概念. 什么是快速矩阵幂? 分析 快速矩阵幂算法是一种简单的具有典型意义的连续为离散算法,同学们一定要掌握其思想,而不是从网上copy一份板子就用. 时间复杂度:\(O(lgN)\): 考点:简单的快速矩阵幂: 坑点…
858 群鸦的盛宴 题目链接:https://buaacoding.cn/problem/858/index 思路 本题乍一眼看过去,你可能会想到使用一个二维数组A[51][51]来记录从i到j的路线数. 你很厉害,这是DP的思想.可是什么情况才用DP:分解得到子问题往往不是互相独立的.这也是DP和分治的最大区别之一.这题我从a走到b,和a之前b之后的格子完全没有关系啊! so,冷静一下再看看,你会发现从1走到3和从2走到4其实是一样的,然后你会发现答案只与\(b-a\)有关. 举几个例子吧,1…
864 AlvinZH的儿时梦想----机器人篇 题目链接:https://buaacoding.cn/problem/868/index 思路 中等题. 判断无限玩耍: \(p\) 的值能够承担的起所有机器的消耗.即比较 \(\sum_{i=1}^{n}a_i\) 与 \(p\) 的大小. 分析 本题有两种解法. 方法一:二分. 即二分枚举最长时间,判断充电器能否支撑此时间所有的耗能,不断缩小时间范围,最后可求得答案.难点在判断函数,比较在当前时间条件下,所有需要充电的机器需要的能量能量总和与…
864 AlvinZH的儿时回忆----蛙声一片 题目链接:https://buaacoding.cn/problem/865/index 思路 中等题.难点在于理解题意!仔细读题才能弄懂题目规则.整个过程是通过模拟位置变化进行的. 第一个问题是AlvinZH的情绪变化,忽略某一位置的青蛙条件是:刚刚经历失败,即前一位置没有抓到青蛙. 第二个问题是什么情况抓到青蛙:不灰心的情况遇到多只青蛙,除去跳的最远的青蛙(可能多只),剩下的都被抓. 分析 像这种数据循环利用且不断变化,但是有序的数据集,应该…
864 AlvinZH的儿时回忆----跳房子 题目链接:https://buaacoding.cn/problem/864/index 思路 这是一道简单题,但是同样有人想复杂了,DP?大模拟?. 本题只要判断能不能到达最后一个格子,又没有问方法数.所以,只需要一个单变量rightMost记录最远能到达的地方,遍历一次数组后比较其与n的大小即可. 分析 经典染色问题的转化:可以把跳格子的过程看成是染色,设在某一时刻,index=m的位置已经被染色了,那么 index=n (n<=m) 的位置肯…
朴素的中位数 题目链接:https://buaacoding.cn/problem/846/index 分析 题意很简单,就是给定了两个从小到大排好序的数组,找出这两个数组合起来的数据中的中位数. 方法应该比较多,很容易想的比如直接合并成两个数组然后对大数组sort()排序:又因为两个数组都已经是各自有序的了,可以联想一下归并排序中合并数组的方式直接得到有序的大数组,这样会快很多(这也是出这道题的本意):应该也可以用找第k小数的方法利用快排的方式直接找中位数.当然因为没有太卡时间,所以方法随意.…
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina.com 算法 递归 迭代 动态规划 斐波那契数列 MD 目录 目录递归和迭代什么是递归什么是迭代法递归和迭代的区别动态规划基本思想适用条件斐波那契数列递归法实现迭代法实现动态规划实现 递归和迭代 什么是递归 递归的基本概念:程序调用自身的编程技巧称为递归 一个函数在其定义中直接或间接调用自身的一种…
目录 1.斐波那契数列(Fibonacci)介绍 2.朴素递归算法(Naive recursive algorithm) 3.朴素递归平方算法(Naive recursive squaring) 4 .自底向上算法(Bottom-up) 5. 递归平方算法(Recursive squaring) 6.完整代码(c++) 7.参考资料 内容 1.斐波那契数列(Fibonacci)介绍 Fibonacci数列应该也算是耳熟能详,它的递归定义如上图所示. 下面2-6分别说明求取Fibonacci数列的…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨.他被人称作“比萨的列昂纳多”.1202年,他撰写了<算盘全书>(Liber Abacci)一书.他是第一个研究了…
 题目 斐波那契堆 解决代码及点评 // 斐波那契堆.cpp : 定义控制台应用程序的入口点. // #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<climits> using namespace std; //斐波那契结点ADT struct FibonacciHeapNode { int key; //结点 int degre…
/** * 用遞推算法求解斐波那契數列:Fn = Fn-2 +Fn-1; */ import java.util.*; public class Fibonacci { public static void main(String[] args) { System.out.println("遞推算法求解兔子產子問題"); System.out.println("請輸入時間:"); Scanner input =new Scanner(System.in); int…
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21.这个数列从第3项开始,每一项都等于前两项之和. 根据这个定义,斐波那契数列的递推公式是:f(n)=f(n-1)+f(n-2) , function _fbnq($n){ if($n <= 0){ return 0; } if($n == 1 || $n == 2){ return 1; } return _fbnq($n - 1) + _fbnq($n - 2); } 测试 $arr= []; for ($i=1;…
一.列出Fibonacci数列的前N个数 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Fibonacci { class Program { static void Main(string[] args) { cal(); cal2(); //运行结果相同 } /*需求:列出Fibonacci数列的前N个数*/ //方案一:迭代N次,一次计算一项 p…
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.--在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=0,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N* 本文章要解决的问题是: 1.生成前n项斐波那契数列 2.求第n项斐波那契数列的值是…
动态规划(Dynamic Programming)是求解决策过程(decision process)最优化的数学方法.它的名字和动态没有关系,是Richard Bellman为了唬人而取的. 动态规划主要用于解决包含重叠子问题的最优化问题,其基本策略是将原问题分解为相似的子问题,通过求解并保存重复子问题的解,然后逐步合并成为原问题的解.动态规划的关键是用记忆法储存重复问题的答案,避免重复求解,以空间换取时间. 用动态规划解决的经典问题有:最短路径(shortest path),0-1背包问题(K…
概要 本章介绍斐波那契堆.和以往一样,本文会先对斐波那契堆的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若文章有错误或不足的地方,请不吝指出! 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆的C实现(完整源码)4. 斐波那契堆的C测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3659060.html 更多内容:数据结…
概要 上一章介绍了斐波那契堆的基本概念,并通过C语言实现了斐波那契堆.本章是斐波那契堆的C++实现. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆的C++实现(完整源码)4. 斐波那契堆的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3659069.html 更多内容:数据结构与算法系列 目录 (01) 斐波那契堆(一)之 图文解析 和 C语言的实现 (02) 斐波那契堆(二)之 C++的实现 (03) 斐波那…
概要 前面分别通过C和C++实现了斐波那契堆,本章给出斐波那契堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆的Java实现(完整源码)4. 斐波那契堆的Java测试程序 转载请注明出处: 更多内容:数据结构与算法系列 目录 (01) 斐波那契堆(一)之 图文解析 和 C语言的实现 (02) 斐波那契堆(二)之 C++的实现 (03) 斐波那契堆(三)之 Java的实现 斐波那契堆的介绍 斐波那契堆(Fib…
一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月,长大后的兔子每个月能生产一对兔子,假设兔子不会死亡,那么一年后有多少只兔子? 不难看出每个月的兔子的总数可以用以下数列表示:1,1,2,3,5,8,13...... 二:最直观的算法 1.算法实现 通过观察我们不难发现斐波那契数列从第三项开始每一项都是前两项的和,因此我们不难总结出该数列的递推公式:…
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调用的层级太多,就会超出栈容量. 循环:通过设置计算的初始值及终止条件,在一个范围内重复运算. 斐波拉契数列 题目一:写一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项,定义如下: 第一种解法:用递归的算法: long long Fabonacci(unsigned int n) { i…
本节大纲 迭代器&生成器 装饰器  基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )等类似公式后,必须自己解析里面的(),+,-,*,/符号和公式,运算后得出结果,结果必须与真实的计算器所得出的结果一致 迭代器&…
算法题目 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: * 前2个数是 0 和 1 . * 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 - 分析 斐波那契数列满足公式f(n) = f(n-1) + f(n-2),n > 0.这里我们的第一想法是使用递归,可是直接翻译公式出来的递归调用是这样的: int fib(int n) { if (n == 1) { return 0; }…
Reverse反转算法 #include <iostream> using namespace std; //交换的函数 void replaced(int &a,int &b){ int t = a; a = b; b = t; } //反转 void reversed(int a[],int length){ ; ; while (left < right) { replaced(a[left], a[right]); left++; right--; } } voi…
之前算斐波那契数列都是算前两个数相加实现的 比如0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 2=1+1 3=1+2 5=2+3 8=3+5 …… 其实还有另外一个规律: 2 = 1*2-03 = 2*2-15 = 3*2-18 = 5*2-213= 8*2-321=13*2-5 …… 下面是JS实现的代码: <!DOCTYPE h…
清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2,34}; //这里防止数组中有负数,所以初始化的时候给的数组中的第一个数. int max=a[0]; int min=a[0]; for (int i = 0; i < a.length; i++) { if(a[i]>max) max=a[i]; if(a[i]<min) min=a[i…
js算法集合(二)  斐波那契数列 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列进行研究,来加深对循环的理解.     Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列…
斐波那契数列问题:如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第三个月里,又能开始生1对小兔子,假定在不发生死亡的情况下,由一对初生的兔子开始,1年后能繁殖出多少对兔子? 首先手工计算来总结规律,如下表 注意总数这一列 1+1=2 1+2=3 2+3=5 3+5=8 5+8=13 可以得出规律,第n个斐波那契数=第n-1个斐波那契数+第n-2个斐波那契数 为了计算n,必须计算n-1和n-2:为了计算n-1,必须计算n-2和n-3:直到n-x的值为1为止,这显示是递归大显身手的地方.来看…
学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只不过改成n<=10^30000000,并对给定p取模,0<p<2^31.一样很水嘛大家说对不对. 下面来简单介绍一下BSGS算法,BSGS(Baby steps and giant steps),又称包身工树大步小步法,听上去非常高端,其实就是一个暴力搜索.比如我们有一个方程,a^x≡b (…
ylbtech-Java-Runoob-高级教程-实例-方法:04. Java 实例 – 斐波那契数列 1.返回顶部 1. Java 实例 - 斐波那契数列  Java 实例 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368…… 特别指出:第0项是0,第1项是第一个1. 这个数列从第三项开始,每一项都等于…
为什么说 “算法是程序的灵魂这句话一点也不为过”,递归计算斐波那契数列的第50项是多少? 方案一:只是单纯的使用递归,递归的那个方法被执行了250多亿次,耗时1分钟还要多. 方案二:用一个map去存储之前计算出的某一项的数据map<n, feibo(n)>,当后面项需要使用前面项的值时,只需要从map中取即可,递归的那个方法仅仅行了97次,耗时还不到1ms. 而这仅仅是计算第50项的值,再往大去计算的话,方案一耗时会更久,因为执行的次数是呈现指数增加的,而且递归的次数过多还有可能会出现栈溢出的…