题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ x^n)\] \[f^2(x)g^2(x)-2f(x)g(x)+1\equiv 0\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv 1\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv f(x)g'(x)…
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html https://www.cnblogs.com/Mychael/p/9216906.html 注意取模那里的 NTT 范围就是模数的次数: 各处注意一下对系数数组取模(超出的位置赋0). 代码如下: #include<iostream> #include<cstdio> #include&l…
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html https://www.cnblogs.com/Mychael/p/9045143.html 注意那个 \( \left\lceil n/2 \right\rceil \),因为如果 n = 6,那么 6 = 0+6 = 1+5 = 2+4 = 3+3,对 0,1,2,3 都有要求,所以下一层传…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
洛谷P1120 小木棍 [数据加强版] 搜索+剪枝 [剪枝操作]:若某组拼接不成立,且此时 已拼接的长度为0 或 当前已拼接的长度与刚才枚举的长度之和为最终枚举的答案时,则可直接跳出循环.因为此时继续枚举其它更小的值时,显然可能情况更少,且同样凑不完. #include<stdio.h> #include<string.h> #include<stdlib.h> #include<algorithm> using namespace std; const i…
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的逆元. 前置技能 快速数论变换(NTT),求一个数$x$在模$p$意义下的乘法逆元. 多项式的逆元 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$A(x)\times B(x) \equiv 1 (mod…
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但是这次用last边已经不行了,只能拿76分.我们把跳fail边的过程放到串扫描完之后一次性进行. AC自动机 #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int&g…