Pandas透视表处理数据(转)】的更多相关文章

手把手教你用Pandas透视表处理数据(附学习资料) 2018-01-06 数据派THU 来源:伯乐在线 -  PyPer 本文共2203字,建议阅读5分钟.本文重点解释pandas中的函数pivot_table,并教大家如何使用它来进行数据分析. 介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容,经常需要记住它的使用语法.所以,本文将重点解释p…
介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容,经常需要记住它的使用语法.所以,本文将重点解释pandas中的函数pivot_table,并教大家如何使用它来进行数据分析. 如果你对这个概念不熟悉,wikipedia上对它做了详细的解释.顺便说一下,你知道微软为PivotTable(透视表)注册了商标吗?其实以前我也不知道.不用说,下面我将讨论…
概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可以进行数据科学计算和数据分.他可以联合其他数据科学计算工具一块儿使用,比如,SciPy,NumPy 和 Matplotlib,建模工程师可以通过创建端到端的分析工作流来解决业务问题. 虽然我们可以 Python 和数据分析做很多强大的事情,但是我们的分析结果的好坏依赖于数据的好坏.很多数据集存在数据…
概要 了解数据 分析数据问题 清洗数据 整合代码 了解数据 在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的.我们尝试去理解数据的列/行.记录.数据格式.语义错误.缺失的条目以及错误的格式,这样我们就可以大概了解数据分析之前要做哪些“清理”工作. 本次我们需要一个 patient_heart_rate.csv (链接:https://pan.baidu.com/s/1geX8oYf 密码:odj0)的数据文件,这个数据很小,可以让我们一目了然.这个数据是 csv 格式.数据是描述…
预览数据 这次我们使用 Artworks.csv ,我们选取 100 行数据来完成本次内容.具体步骤: 导入 Pandas 读取 csv 数据到 DataFrame(要确保数据已经下载到指定路径) DataFrame 是 Pandas 内置的数据展示的结构,展示速度很快,通过 DataFrame 我们就可以快速的预览和分析数据.代码如下: import pandas as pd ​ df = pd.read_csv('../data/Artworks.csv').head(100) df.hea…
Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做自动化测试的时候,如果涉及到数据的读取和存储,那么而利用pandas就会非常高效,基本上3行代码可以搞定你20行代码的操作!该教程仅仅限于结合柠檬班的全栈自动化测试课程来讲解下pandas在项目中的应用,这仅仅只是冰山一角,希望大家可以踊跃的去尝试和探索! 一.安装环境: 1:pandas依赖处理E…
import numpy as np import pandas as pd 数据加载 首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作.pandas提供了非常多的读取数据的函数,分别应用在各种数据源环境中,我们常用的函数为: read_csv read_table read_sql q 1.1 加载csv数据 header 表标题,可以使用整形和或者整形列表来指定标题在哪一行,None是无标题,默认infer首行 sep 控制数据之间的分隔符号.read_csv方法,默认为逗号(,…
概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可以进行数据科学计算和数据分.他可以联合其他数据科学计算工具一块儿使用,比如,SciPy,NumPy 和 Matplotlib,建模工程师可以通过创建端到端的分析工作流来解决业务问题. 虽然我们可以 Python 和数据分析做很多强大的事情,但是我们的分析结果的好坏依赖于数据的好坏.很多数据集存在数据…
参考:https://www.cnblogs.com/liulinghua90/p/9935642.html 一.安装第三方库xlrd和pandas 1:pandas依赖处理Excel的xlrd模块,所以我们需要提前安装这个,安装命令是:pip install xlrd 2:步骤1准备好了之后,我们就可以开始安装pandas了,安装命令是:pip install pandas 数据准备,有一个Excel文件:格式为 xls 或 xlsx 或 xlt,表单名分别为:学生信息,人员信息,采购信息 其…
Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只能在生成的新数据块中实现编辑效果.当inplace=True时执行内部编辑,不返回任何值,原数据发生改变. import numpy as np import pandas as pd #测试数据. df = pd.DataFrame(data = [[']],index = [1,2,3],col…