【Caffe代码解析】Layer网络层】的更多相关文章

Layer 功能: 是全部的网络层的基类,当中.定义了一些通用的接口,比方前馈.反馈.reshape,setup等. #ifndef CAFFE_LAYER_H_ #define CAFFE_LAYER_H_ #include <algorithm> #include <string> #include <vector> #include "caffe/blob.hpp" #include "caffe/common.hpp" #…
主要功能: Blob 是Caffe作为传输数据的媒介,不管是网络权重參数,还是输入数据,都是转化为Blob数据结构来存储,网络,求解器等都是直接与此结构打交道的. 其直观的能够把它看成一个有4纬的结构体(包括数据和梯度).而实际上,它们仅仅是一维的指针而已,其4维结构通过shape属性得以计算出来(依据C语言的数据顺序). 其成员变量有: protected: shared_ptr<SyncedMemory> data_;// 存放数据 shared_ptr<SyncedMemory&g…
功能: 计算训练数据库的平均图像. 由于平均归一化训练图像会对结果有提升,所以Caffe里面,提供了一个可选项. 用法: compute_image_mean [FLAGS] INPUT_DB [OUTPUT_FILE]\n") 參数:INPUT_DB: 数据库 參数(可选):OUTPUT_FILE: 输出文件名称,不提供的话,不保存平均图像blob 实现方法: 数据源:求平均图像的方法是直接从数据库(LevelDB或者LMDB)里面直接读取出来的,而不是直接用图像数据库里面求出,意味着,必须先…
原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(三) - aggregators.py 1. 类及其继承关系 Model / \ / \ MLP GeneralizedModel / \ / \ Node2VecModel SampleAndAggregate 首先看Model, GeneralizedModel,…
前言: 通过检索论文.书籍.博客,继续学习Caffe,千里之行始于足下,继续努力.将自己学到的一些东西记录下来,方便日后的整理. 正文: 1.代码结构梳理 在终端下运行如下命令,可以查看caffe代码结构,我将其梳理了一下: root@ygh:/home/ygh/caffe# tree -d . ├── build -> .build_release //编译结果存放处,子目录结构与主目录类似 ├── cmake //使用CMake编译时会用到 │   ├── External │   ├──…
原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(四) - models.py 1. class MeanAggregator(Layer): 该类主要用于实现 1. __init__() __init_() 用于获取并初始化成员变量 dropout, bias(False), act(ReLu), concat(Fa…
原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(一) - unsupervised_train.py GraphSAGE 代码解析(三) - aggregators.py GraphSAGE 代码解析(四) - models.py 1 # global unique layer ID dictionary for layer name assignment 2 _LAYER_UIDS = {} 3 4 def get_layer_uid(layer_name…
原创文章-转载请注明出处哦.其他部分内容参见以下链接- GraphSAGE 代码解析(二) - layers.py GraphSAGE 代码解析(三) - aggregators.py GraphSAGE 代码解析(四) - models.py GraphSAGE代码详解 example_data: 1. toy-ppi-G.json 图的信息 { directed: false graph : { {name: disjoint_union(,) } nodes: [ { test: fals…
Layer类简介 Layer是caffe中搭建网络的基本单元,caffe代码中包含大量Layer基类派生出来的各种各样的层,各自通过虚函数 Forward() 和 Backward() 实现自己的功能. Forward() 函数用于前向计算过程,由 bottom blob 计算 top blob 和 loss ,实现数据由浅至深的传递.而 Backward() 函数用于反向传播过程,由 top blob 的计算 bottom blob 的梯度,将网络的预测误差向浅层网络传递,以便更新网络的参数.…
InceptionV3代码解析 参考博文:https://blog.csdn.net/superman_xxx/article/details/65451916 读了Google的GoogleNet以及InceptionV3的论文,决定把它实现一下,尽管很难,但是网上有不少资源,就一条一条的写完了,对于网络的解析都在代码里面了,是在原博主的基础上进行修改的,添加了更多的细节,以及自己的理解.总之,是更详细更啰嗦的一个版本,适合初学者. import tensorflow as tf from d…