clear all; clc; %% %算法 %输入:训练数据集T = {(x1,y1),(x2,y2),...,(xn,yn)};学习率η %输出:w,b;感知机模型f(x) = sign(w*x+b) %()选取初值w0,b0 %()在训练集中选取数据(xi,yi) %()如果yi(w*xi+b)<= % w = w+η*yi*xi % b = b+ηyi %()转至(),直至训练集中没有误分类点 %% %初始化 X = [ ; ; -];%训练集 [sn,fn] = size(X); y…
原文地址http://blog.sina.com.cn/s/blog_684c8d630100turx.html 刚开会每周的例会,最讨厌开会了,不过为了能顺利毕业,只能忍了.闲话不多说了,下面把上周学习的一个简单的算法总结一下,以备后面写毕业论文的时候可以参考一下. 一.Census Transform(CT)算法的学习     Census Transform 算法是Ramin Zabih 和 John Woodfill 于1994年在他们的论文<Non-parametric LocalTr…
接着统计学习中knn算法实验(1)的内容 Problem: Explore the data before classification using summary statistics or visualization Pre-process the data (such as denoising, normalization, feature selection, …) Try other distance metrics or distance-based voting Try other…
感知机: 假设输入空间是\(\chi\subseteq R^n\),输出空间是\(\gamma =\left( +1,-1\right)\).输入\(\chi\in X\)表示实例的特征向量,对应于输入空间的点:输出\(y\in \gamma\)表示实例的类别.由输入空间到输出空间的如下函数: \[ f\left( x\right) =sign\left( wx+b\right) \] 称为感知机.其中,w和b为感知机模型的参数,sign是符号函数,即: \[ sign\left( x\righ…
这篇学习笔记强调几何直觉,同时也注重感知机算法内部的动机.限于篇幅,这里仅仅讨论了感知机的一般情形.损失函数的引入.工作原理.关于感知机的对偶形式和核感知机,会专门写另外一篇文章.关于感知机的实现代码,亦不会在这里出现,会有一篇专门的文章介绍如何编写代码实现感知机,那里会有几个使用感知机做分类的小案例. 感知机算法是经典的神经网络模型,虽然只有一层神经网络,但前向传播的思想已经具备.究其本质,感知机指这样一个映射函数:\(sign(w_ix_i + b)\),将数据带进去计算可以得到输出值,通过…
简介:感知机在1957年就已经提出,可以说是最为古老的分类方法之一了.是很多算法的鼻祖,比如说BP神经网络.虽然在今天看来它的分类模型在很多数时候泛化能力不强,但是它的原理却值得好好研究.先学好感知机算法,对以后学习神经网络,深度学习等会有很大的帮助. 一,感知机模型 (1).超平面的定义 令w1,w2,...wn,v都是实数(R) ,其中至少有一个wi不为零,由所有满足线性方程w1*x1+w2*x2+...+wn*xn=v 的点X=[x1,x2,...xn]组成的集合,称为空间R的超平面. 从…
翻译:Tacey Wong 统计学习: 随着科学实验数据的迅速增长,机器学习成了一种越来越重要的技术.问题从构建一个预测函数将不同的观察数据联系起来,到将观测数据分类,或者从未标记数据中学习到一些结构. 本教程将探索机器学习中统计推理的统计学习的使用:将手中的数据做出结论 Scikit-learn 是一个紧密结合Python科学计算库(Numpy.Scipy.matplotlib),集成经典机器学习算法的Python模块. 一.统计学习:scikit-learn中的设置与评估函数对象 (1)数据…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…
统计学习:scikit学习中的设置和估计对象 数据集 Scikit学习处理来自以2D数组表示的一个或多个数据集的学习信息.它们可以被理解为多维观察的列表.我们说这些阵列的第一个轴是样本轴,而第二个轴是 特征轴. scikit:iris数据集附带的一个简单示例 >>> >>> from sklearn import datasets >>> iris = datasets.load_iris() >>> data = iris.data…
目录 1. 引言 2. 载入库和数据处理 3. 感知机的原始形式 4. 感知机的对偶形式 5. 多分类情况-one vs. rest 6. 多分类情况-one vs. one 7. sklearn实现 8. 感知机算法的作图 1. 引言 在这里主要实现感知机算法(PLA)的以下几种情况: PLA算法的原始形式(二分类) PLA算法的对偶形式(二分类) PLA算法的作图(二维) PLA算法的多分类情况(包括one vs. rest 和one vs. one 两种情况) PLA算法的sklearn实…