最近两天在学习GBDT,看了一些资料,了解到GBDT由很多回归树构成,每一棵新回归树都是建立在上一棵回归树的损失函数梯度降低的方向. 以下为自己的理解,以及收集到的觉着特别好的学习资料. 1.GBDT可用于回归任务和分类任务. GBDT做回归任务时,每一棵子树的构建过程与cart回归树的建立过程相同,使用最小化均方误差来选择最优划分的特征,不同点是GBDT子树的根节点数据为前一棵子树所有样本真实值与其所在叶子结点预测值的残差. GBDT做分类任务时,可以做二分类,也可以做多分类.一直没搞懂最优划…