评价指标ROC,PR】的更多相关文章

之前实习的时候一直见公司里面的人说什么AUC, 实际AUC就是ROC曲线的面积 PR是precise和recall曲线,和ROC的区别是,当测试集中的正负样本分布变化的时候,ROC曲线能够保持不变,而PR曲线则变化很厉害…
ROC 曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc 曲线上每个点反映着对同一信号刺激的感受性. 对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC.下图是一个 ROC 曲线的示例: 横坐标:Sensitivity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本…
AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,accuracy,precision.如果你经常关注数据挖掘比赛,比如kaggle,那你会发现AUC和logloss基本是最常见的模型评价指标.为什么AUC和logloss比accuracy更常用呢?因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy,需要先把概率转化成类别,这…
ROC曲线: 横轴:假阳性率 代表将负例错分为正例的概率 纵轴:真阳性率 代表能将正例分对的概率 AUC是ROC曲线下面区域得面积. 与召回率对比: AUC意义: 任取一对(正.负)样本,把正样本预测为1的概率大于把负样本预测为1的概率的概率.基于上述,AUC反映的是分类器对样本的排序能力,如果进行随机预测,那么AUC的值应该为0.5.另外AUC对样本类别是否均衡并不敏感,所以不均衡样本通常使用AUC作为评价分类器的标准. 首先AUC值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分…
学习笔记之scikit-learn - 浩然119 - 博客园 https://www.cnblogs.com/pegasus923/p/9997485.html 3. Model selection and evaluation — scikit-learn 0.20.3 documentation https://scikit-learn.org/stable/model_selection.html#model-selection Accuracy paradox - Wikipedia…
有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-custom-transformers 幼儿级模型 一.模型训练 简单的preprocessing后,仅使用一个“属性”做预测,看看结果如何? #%% import pandas as pd import numpy as np import os from sklearn.model_selection…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
转自:http://www.zhizhihu.com/html/y2012/4076.html分类.检索中的评价指标很多,Precision.Recall.Accuracy.F1.ROC.PR Curve...... 一.历史 wiki上说,ROC曲线最先在二战中分析雷达信号,用来检测敌军.诱因是珍珠港事件:由于比较有用,慢慢用到了心理学.医学中的一些检测等应用,慢慢用到了机器学习.数据挖掘等领域中来了,用来评判分类.检测结果的好坏. 百科:ROC曲线指受试者工作特征曲线(receiver op…
这里主要讲的是对分类模型的评估. 1.准确率(Accuracy) 准确率的定义是:[分类正确的样本] / [总样本个数],其中分类正确的样本是不分正负样本的 优点:简单粗暴 缺点:当正负样本分布不均衡的情况(假设一种极端情况,正样本1个,负样本99个),此时即使一个比较差的模型(只会将所用的样本预测成负样本),那它也有99%的准确率. 总结一下就是 当样本分布不均匀,该指标意义不大 改进方案: 1.在不同样本分类下求它的准确率,然后取平均值 2.选取其他评价指标 2.PR曲线 Precision…
这里介绍一下如题所述的四个概念以及相应的使用python绘制曲线: 参考博客:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/?utm_source=tuicool&utm_medium=referral 一般我们在评判一个分类模型的好坏时,一般使用MAP值来衡量,MAP越接近1,模型效果越好: 更详细的可参考:http://www.cnblogs.com/pinard/p/5993450.ht…