这是一篇CMU发的神经机器翻译教程论文,很全很详细,适合新手阅读,即使没有什么MT.DNN.RNN的基础知识. 另外它还配套了CMU自己的一个框架DyNet的练习. 全文共9章,从统计语言模型到DNN到RNN到Encoder-Deconder再到注意力模型,中间穿插了许多技巧方法,如SGD.其他梯度方法.Beam-search.梯度消失/爆炸.LSTM.GRU等等,非常全面.链接如下:https://arxiv.org/abs/1703.01619 百度学术地址:http://xueshu.ba…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention) 原文链接:https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 神经机器翻译模型(基于注意力机制的Seq2…
读论文 Neural Machine Translation by Jointly Learning to Align and Translate 这个论文是在NLP中第一个使用attention机制的论文.他们把attention机制用到了神经网络机器翻译(NMT)上.NMT其实就是一个典型的sequence to sequence模型,也就是一个encoder to decoder模型,传统的NMT使用两个RNN,一个RNN对源语言进行编码,将源语言编码到一个固定维度的中间向量,然后在使用一…
seq2seq 模型在广泛的任务比如机器翻译,语音识别,文本总结中取得了巨大的成功.这个教程给读者 seq2seq 模型一个完整的理解,并且展示如何从原型建立一个有竞争力的 seq2seq 模型.我们专注于神经机器翻译任务,这是 seq2seq 模型取得的第一个广泛的成功.下面包含的代码是轻量级,高质量,产品级,并且包含了最新的研究思路. 我们通过以下实现了这个目标: 1.使用了最近的 decoder attention API 2.包含了我们强大的简历 RNN 和 seq2seq 模型的经验.…
1. 前言 本文介绍一种无监督的机器翻译的模型.无监督机器翻译最早是<UNSUPERVISED NEURAL MACHINE TRANSLATION>提出.这个模型主要的特点,无需使用平行语料库,使用去噪和回译的步骤构建NMT系统. 2018年Facebook人工智能实验室再次公布了有关无监督神经网络翻译的最新模型<Phrase-Based & Neural Unsupervised Machine Translation>,相当于用 10 万个参考译文训练过的监督模型.&…
基于TensorRT优化的Machine Translation 机器翻译系统用于将文本从一种语言翻译成另一种语言.递归神经网络(RNN)是机器翻译中最流行的深度学习解决方案之一. TensorRT机器翻译示例的一些示例包括: Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model Building An RNN Network Layer By Layer 4.1. Neural Machine…
论文:NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE 综述 背景及问题 背景: 翻译: 翻译模型学习条件分布后,给定一个源句,通过搜索最大条件概率的句子,可以生成相应的翻译. 神经网络翻译:两个组件:第一个:合成一个源句子x:第二个:解码一个目标句子y. 问题:固定长度向量是编码器 - 解码器架构性能提升的瓶颈. 本文主要思想 本文提出:允许模型自动(软)搜索与预测目标单词相关的源句 --- 扩展的编码器…
Neural Machine Translation Welcome to your first programming assignment for this week! You will build a Neural Machine Translation (NMT) model to translate human readable dates ("25th of June, 2009") into machine readable dates ("2009-06-25…
这篇论文主要是提出了Global attention 和 Local attention 这个论文有一个译文,不过我没细看 Effective Approaches to Attention-based Neural Machine Translation 中英文对照翻译 - 一译的文章 - 知乎 https://zhuanlan.zhihu.com/p/38205832 看这个论文的时候我主要是从第三小节开始看起的,也就是 attention-based models 我们基于attentio…