问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Floyd算法适用于多源最短路径,是一种动态规划算法,稠密图效果最佳,边权可正可负.优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单.缺点:时间复杂度比较高,不适合计算大量数据.Floyd算法时间复杂度为n^3,Dijikstra算法为n^2. 优化代码: #include <iostre…
转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法的介绍 算法的特点 弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. 算法的思路 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离.矩阵P中的元素b…
先看懂如何使用 用Java实现一个地铁票价计算程序 String station = "A1 A2 A3 A4 A5 A6 A7 A8 A9 T1 A10 A11 A12 A13 T2 A14 A15 A16 A17 A18 B1 B2 B3 B4 B5 T1 B6 B7 B8 B9 B10 T2 B11 B12 B13 B14 B15"; 思路:step1: 设计为A1-A18, T1,T2,B1-B15个点 step2:35个点做为arr[35][35],将相邻的点A1-A2 ..…
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有顶点至所有顶点的的最短路径计算,代码及其简洁 JS实现: //定义邻接矩阵 let Arr2 = [ [0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535], [1, 0, 3, 7, 5, 65535, 65535, 65535, 65535], […
算法描述: Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1):又用同样地公式由D(1)构造出D(2):……:最后又用同样的公式由D(n-1)构造出矩阵D(n).矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径. 核心思路:通过一个图…
原博来自http://www.cnblogs.com/skywang12345/ 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,…
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距…
package com.rao.graph; /** * @author Srao * @className Floyd * @date 2019/12/11 18:43 * @package com.rao.graph * @Description 弗洛伊德算法 */ public class Floyd { final static int INF = Integer.MAX_VALUE; /** * 弗洛伊德算法 * @param matrix */ public static void…
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex> Q; Vertex V; PtrToAdjVNode W; Q.push(S); while (!Q.empty()) { V = Q.front(); Q.pop(); for (W = Graph->G[V].FirstEdge; W; W = W->Next) ) { dist[W-&…
#include <iostream> #include <string> #include <iomanip> using namespace std; #define INFINITY 65535 #define MAX_VERTEX_NUM 10 typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和边数 }MGraph; int…
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶…
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫.另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠.老鼠变鱼的魔咒连起来念:hahahehe. 现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物.老师允许他自己带一只动物去考场,要考察…
在NOIP比赛中,如果出图论题最短路径应该是个常考点. 求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分) dijkstra算法 (堆优化之后是O(MlogE),再加些玄学优化一般就是正解了,100分做法) SPFA算法  ( 个人是不建议学习的,在NOIP提高组中出题人是故卡SPFA,它的复杂度是不确定的,它是基于ballman-Fold算法(O(N*E))的队列优化版) 这个应该都是比较简单的,直接上代码吧 dijkstra #include<ios…
参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. image.png 1.Kruskal算法 此算法可以称为"加边法",初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里. 把图中的所有边按代价从小到大排序: 把图中的n个顶点看成独立的n棵树组成的森林: 按权值从小到大选择边,所选的边连接的两个顶点u…
/* 数据结构C语言版 弗洛伊德算法  P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> #define MAX_NAME 5   // 顶点字符串的最大长度+1#define MAX_INFO 20   // 相关信息字符串的最大长度+1typedef int VRType;   // 顶点关系的数据类型#define INFINITY INT_MAX // 用整型最大值代替∞#define MA…
侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new beginning,but anyone can start today and make a new ending. Name:Willam Time:2017/3/8 1.最短路径问题介绍 问题解释: 从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径 解决问题的…
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点E条边. 该算法主要流程是: 初始化.到起点s的距离distTo[s]设置为0,其余顶点的dist[]设置为正无穷: 以任意次序放松图中的所有E条边,重复V轮: V轮放松结束后,判断是否存在负权回路.如果存在,最短路径没有意义. 根据流程可以给出代码,如下 package Chap7; import…
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么(Vi...Vk)也必然是从i到k的最短路径.Dijkstra是以最短路径长度递增,逐次生成最短路径的算法.比如:对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+cost[i][j]}.如…
这是网络流最基础的部分--求出源点到汇点的最大流(Max-Flow). 最大流的算法有比较多,本次介绍的是其中复杂度较高,但是比较好写的EK算法.(不涉及分层,纯粹靠BFS找汇点及回溯找最小流量得到最终的答案) EK算法,全名Edmonds-Karp算法(最短路径增广算法). 首先简单介绍一下网络流的基本术语: 源点:起点.所有流量皆从此点流出.只出不进. 汇点:终点.所有流量最后汇集于此.只进不出. 流量上限:有向边(u,v)(及弧)允许通过的最大流量. 增广路:一条合法的从源点流向汇点的路径…
首先看看这换个数据图 邻接矩阵 dijkstra算法的寻找最短路径的核心就是对于这个节点的数据结构的设计 1.节点中保存有已经加入最短路径的集合中到当前节点的最短路径的节点 2.从起点经过或者不经过 被选中节点到当前节点的最短路径 以这个思路开始,就可以根据贪心算法,获取每一步需要设置的值,每一步加入路径的节点 对于这个算法,我采用:小顶堆 + 邻接矩阵(数组) 1.邻接矩阵的初始化 package cn.xf.algorithm.ch09Greedy.vo; import java.io.Bu…
function Graph() { this.graph = [ [0, 2, 4, 0, 0, 0], [0, 0, 1, 4, 2, 0], [0, 0, 0, 0, 3, 0], [0, 0, 0, 0, 0, 2], [0, 0, 0, 3, 0, 2], [0, 0, 0, 0, 0, 0] ]; var vertices = ["A","B","C","D","E","F"…
数据结构与算法--最短路径之Dijkstra算法 加权图中,我们很可能关心这样一个问题:从一个顶点到另一个顶点成本最小的路径.比如从成都到北京,途中还有好多城市,如何规划路线,能使总路程最小:或者我们看重的是路费,那么如何选择经过的城市可以使得总路费降到最低? 首先路径是有向的,最短路径需要考虑到各条边的方向. 权值不一定就是指距离,还可以是费用等等... 最短路径的定义:在一幅有向加权图中,从顶点s到顶点t的最短路径是所有从s到t的路径中权值最小者. 为此,我们先要定义有向边以及有向图. 加权…
---layout: posttitle: 2018-02-03-PY3下经典数据集iris的机器学习算法举例-零基础key: 20180203tags: 机器学习 ML IRIS python3modify_date: 2018-02-03--- # python3下经典数据集iris的机器学习算法举例-零基础说明:* 本文发布于: gitee,github,博客园* 转载和引用请指明原作者和连接及出处. 正文:* 以下内容可以拷贝到一个python3源码文件,比如较“iris_ml.py”当…
进入图之后,最短路径可谓就是一大重点,最短路径的求法有很多种,每种算法各有各的好处,你会几种呢?下面来逐个讲解. 1 floyed算法 1)明确思想及功效:在图中求最短路还是要分开说的,分别是单源最短路和多源最短路,而floyed算法是求多源最短路的,什么是多源最短路呢?简单来说就是用完算法之后能直接写出任意两点间的最短路径长度.floyed算法在本质上是动态规划思想,不断更新最短路径的值,主要思想就是不断判断两个点是否可以通过一个点中继以刷新当前两个点最短路径的估计值,直到每两个点都判断完成.…
参考网址: https://www.jianshu.com/p/8b3cdca55dc0 写在前面: 上次我们介绍了神奇的只有五行的 Floyd-Warshall 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路". 这次来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做"单源最短路径".例如求下图中的 1 号顶点到 2.3.4.5.6 号顶点的最短路径.     Dijkstra算法 与 Floyd-Warshall 算法一样,这里仍然使用…
文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就是弗洛伊德(Floyd)算法,它的时间复杂度也为n^3,但是形式上更简单,其基本思想如下: 如果无法理解上面的文字的话,建议看下代码实现部分,可以更容易理解. 示意图 算法分析 时间复杂度为n^3 代码实现 // // Created by lady on 19-1-6. // #include <…
https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析…
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 2.算法描述 1)算法思想原理: Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新做…
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 2.算法描述 1)算法思想原理: Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新做…
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 简单的说就是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 解决最短…