BP神经网络综合评价法】的更多相关文章

BP神经网络综合评价法是一种交互式的评价方法,一种既能避免人为计取权重的不精确性, 又能避免相关系数求解的复杂性,还能对数量较大且指标更多的实例进行综合评价的方法,它可以根据用户期望的输出不断修改指标的权值,直到用户满意为止.因此,一般来说,人工神经网络评价方法得到的结果会更符合实际情况. BP神经网络是一种典型的多层前向神经网络,由输入层.隐,层和输出层组成,层与层之间采用全部连接方式,同层节点之间不存在相互连接,其中输入层节点仅在信号输入作用,输出层节点起线性加权作用,隐层节点负责对信息进行…
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心向往之?现在入坑之后就是下面的表情: 好了好了,玩笑就开到这里,其实我是真的很喜欢这门学科,要不喜欢,老子早考公务员,找事业单位去了,还在这里陪你们牛逼打诨?写博客,吹逼? 1神经网络历史(本章来自维基百科,看过的自行跳过) 沃伦·麦卡洛克)[基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算…
http://www.cnblogs.com/wengzilin/archive/2013/04/24/3041019.html 学 习是神经网络一种最重要也最令人注目的特点.在神经网络的发展进程中,学习算法的研究有着十分重要的地位.目前,人们所提出的神经网络模型都是和学习算 法相应的.所以,有时人们并不去祈求对模型和算法进行严格的定义或区分.有的模型可以有多种算法.而有的算法可能可用于多种模型.不过,有时人们也称算法 为模型. 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学…
 BP神经网络基本原理 BP神经网络是一种单向传播的多层前向网络,具有三层或多层以上的神经网络结构,其中包含输入层.隐含层和输出层的三层网络应用最为普遍. 网络中的上下层之间实现全连接,而每层神经元之间无连接.当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入相应.然后,随着减小目标输出与实际误差的方向,从输出层经过各中间层修正各连接权值,最后回到输入层. BP算法是在建立在梯度下降基础上的,BP算法的知道思想是对网络权值与阈值的修正,使误…
学习是神经网络一种最重要也最令人注目的特点.在神经网络的发展进程中,学习算法的研究有着十分重要的地位.目前,人们所提出的神经网络模型都是和学习算 法相应的.所以,有时人们并不去祈求对模型和算法进行严格的定义或区分.有的模型可以有多种算法.而有的算法可能可用于多种模型.不过,有时人们也称算法 为模型. 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法.其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广…
2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每一个样本包含输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过重复学习训练,确定与最小误差相相应的网络參数(权值和阈值),训练即告停止.此时经过训练的神经网络即能对相似样本的输入信息,自行处理输出误差最小…
2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点.经过非线形变换,产生输出信号Yk,网络训练的每一个样本包含输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过重复学习训练,确定与最小误差相相应的网络參数(权值和阈值),训练即告停止.此时经过训练的神经网络即能对相似样本的输入信息.自行处理输出误差最小…
1.使用误差反向传播(error back propagation )的网络就叫BP神经网络 2.BP网络的特点: 1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接 . 2)BP网络的传递函数必须可微.BP网络一般使用Sigmoid函数或线性函数作为传递函数.  在输出层使用Sigmoid函数会把输出限定在一个较小的范围内,经典方法是隐藏层用Sigmoid函数,输出层用线性函数 3)BP网络采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP…
本实验使用mnist数据集完成手写数字识别的测试.识别正确率认为是95% 完整代码如下: #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy import scipy.special import matplotlib.pyplot # In[2]: class neuralNetwork: def __init__(self, inputNodes, hiddenNodes, outputNodes,learningRate)…
BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要.接下来,我们对原理和实现展开讨论. 1.原理  有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example 激活函数参考:深度学习常用激活函数之— Sigmoid & ReLU & Softmax 浅显易懂的初始化:CS231n课程笔记翻译:神经网络笔记 2 有效的Trick:神经网络训练中的Tricks之高效BP(…
学习是神经网络一种最重要也最令人注目的特点.在神经网络的发展进程中,学习算法的研究有着十分重要的地位.目前,人们所提出的神经网络模型都是和学习算 法相应的.所以,有时人们并不去祈求对模型和算法进行严格的定义或区分.有的模型可以有多种算法.而有的算法可能可用于多种模型.不过,有时人们也称算法 为模型. 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法.其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广…
摘 要 在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出单个字符,识别方法一是采用模板匹配的方法逐个对字符与预先制作好的字符模板比较,如果结果小于某一阈值则结果就是模板上的字符:二是采用BP神经网络训练,通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. 关键字: 倾斜矫正,字符分割,模板…
本文学习笔记是自己的理解,如有错误的地方,请大家指正批评.共同进步.谢谢! 之前的教学质量评价,仅仅是通过对教学指标的简单处理.如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有非常大主观性.利用BP神经网络建立教学质量评价系统的模型,通过调查分析得到教学评价指标.将其标量化成确定的数据作为其输入,用BP神经网络训练后作为实际输出,将之前得到的教学效果作为期望输出.比較期望输出与实际输出的误差.当误差达到期望的最小值时,觉得训练成功. 训练成功后能够得到比較准确的权值和阈值.用训练成功…
BP神经网络是包含多个隐含层的网络,具备处理线性不可分问题的能力.以往主要是没有适合多层神经网络的学习算法,,所以神经网络的研究一直处于低迷期. 20世纪80年代中期,Rumelhart,McClelland等成立了Parallel Distributed Procession(PDP)小组,提出了著名的误差反向传播算法(Error Back Propagtion,BP). BP和径向基网络属于多层前向神经网络.广泛应用于分类识别.逼近.回归.压缩等领域. BP神经网络(强调是用BP算法)一般是…
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播.在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响下一层神经元状态.如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阔值,从而使BP神经网络预测输出不断逼近期望输出.当输入节点数为$n$.输出节点数为$m$时, BP 神经网络就表达了从$n$个自变量到$m$个因变量的函数映射关系. BP 神经网络预测前首先要训练网…
python对BP神经网络实现 一.概念理解 开始之前首先了解一下BP神经网络,BP的英文是back propagationd的意思,它是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法. 它的基本思想是梯度下降法,利用梯度搜索技术,期望使网络的实际输出值和期望输出值的误差和均方差为最小. 基本BP算法包括信号的前向传播和误差的反向传播两个过程. 正向传播过程:输入信号--通过隐含层-->作用于输出节点(经过非线性变换,产生输出信号)-->验证实际输出结果是否与期望输出…
秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆.看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题: 单个神经元 神经网络是由多个"神经元"组成,单个神经元如下图所示: 这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量.其中Θ为偏置(bias),σ为激活函数(tran…
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropagation 简称BP),主要讲述算法的基本流程和自己在训练BP神经网络的一些经验. BP神经网络的结构 神经网络就是模拟人的大脑的神经单元的工作方式,但进行了很大的简化,神经网络由很多神经网络层构成,而每一层又由许多单元组成,第一层叫输入层,最后一层叫输出层,中间的各层叫隐藏层,在BP神经网络中,只有…
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad…
一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,0,1,1]) # 权值矩阵 初始化 Wi = 2 * np.random.random(3) - 1 for iter in range(10000): # 前向传播,计算误差 li = X lo = 1 / (1 + np.exp(-np.dot(l…