降维【PCA & SVD】】的更多相关文章

PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数据能够有大的方差. 为什么呢? 因为每一维的方差越大,说明数据之间区分度高,想象一个极端的情况,降维之后的数据集所有维度 都是一样的值,方差为0,那么数据就没什么意义了,因为退化成了一条数据. 二维图生动形象 推导过程    对于n个样本,m维特征 (v1, v2, v3 ... vn), vi是m…
本文是对PCA和SVD学习的整理笔记,为了避免很多重复内容的工作,我会在介绍概念的时候引用其他童鞋的工作和内容,具体来源我会标记在参考资料中. 一.PCA (Principle component analysis) PCA(主成分分析)通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 为什么需要降维?以下图为例,图c中的点x y 呈现明显线性相关,假如以数据其实以数据点分布的方向的直线上的投影(一维)已经能够很好的描述这组数据特点了 .…
PCA的数学原理 https://www.zhihu.com/question/34143886/answer/196294308 奇异值分解的揭秘(二):降维与奇异向量的意义 奇异值分解的揭秘(一):矩阵的奇异值分解过程 浅谈张量分解(三):如何对稀疏矩阵进行奇异值分解? 如何直观地理解「协方差矩阵」? PCA(主成分分析) 奇异值分解(SVD) 奇异值的物理意义是什么? https://www.zhihu.com/question/22237507/answer/53804902 https…
1.原理和概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法. PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征. PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的. 其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,…
降维技术使得数据变得更易使用,并且它们往往能够去除数据中的噪声,使得机器学习任务往往更加精确. 降维往往作为预处理步骤,在数据应用到其它算法之前清洗数据.有很多技术可以用于数据降维,在这些技术中,独立成分分析(Independent Component Analysis, ICA).因子分析(Factor Analysis).主成分分析(Principal Component Analysis, PCA)比较流行,其中又以主成分分析应用最广泛. PCA可以从数据中识别其主要特征,它是通过沿着数据…
1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征.PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的.其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2…
1.sklearn降维API:sklearn. decomposition 2.PCA是什么:主成分分析 本质:PCA是一种分析.简化数据集的技术. 目的:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息. 作用:可以削减回归分析或者聚类分析中特征的数量. 当特征达到上百的时候,考虑是否要使用PCA来删除部分特征. 3.高维度数据容易出现的问题:特征之间通常是线性相关的. 4.PCA语法: PCA(n_components=None) 将数据分解为较低维数空间 n_componen…
样本 代码: import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris #加载鸢尾花数据集导入函数 data = load_iris()#加载数据,array([[5.1 3.5 1.4 0.2].....]) #print(data) y = data.target #各50个 0,1,2 暂不明作用, #print(y) X = da…
clear all;close all;clc;img1=imread('Corner.png');img2=imread('Corner1.png');img3=imread('Corner2.png'); img1=imresize(img1,[35 90]); %Matlab的svd不支持太大的数据,我把数据变小了.img2=imresize(img2,[35 90]);img3=imresize(img3,[35 90]); [height width]=size(img2);a=res…