题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完备匹配,则称这是一个稳定匹配. 稳定匹配一定存在,且存在一个\(O(n^2)\)的算法: 任选一个未匹配的男生x,按x的喜爱程度从大到小枚举每个女生,若当前女生没有配偶或喜欢x胜过喜欢当前配偶,则与x匹配.直到所有男生都匹配. 这一题我们用行表示男生,n个数表示女生.喜爱程度为:行更喜欢靠前的数,数…
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男生向自己未追求过的排名最高女生求婚. 然后每个有追求者的女生在自己现男友和追求者中选择一个最喜欢的接受,然后拒绝其他人. 算法一定可以结束. 因为如果最后有一个男生单身,那他一定把所有女生都追求过一遍,说明没有女生单身,产生矛盾. #include<iostream> #include<cs…
3816: 矩阵变换 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 803  Solved: 578[Submit][Status][Discuss] Description 给出一个 N 行 M 列的矩阵A, 保证满足以下性质: M>N. 矩阵中每个数都是 [0,N] 中的自然数. 每行中, [1,N] 中每个自然数都恰好出现一次.这意味着每行中 0 恰好出现 M−N 次. 每列中,[1,N] 中每个自然数至多出现一次. 现在我们要在每行中选取…
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操作加入线段树中下一个叶子,然后如果某个节点里所有操作都加进去了,就条到父亲,把两个儿子的信息合并到父亲上.这里合并就是把两个区间集合合并成一个,例如两个区间\([a,c]\)和\([b,d](a\le b\le c\le d)\)会合并成\([a,b),[b,c),[c,d]\).合并出来的区间如果…
[清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出一个 N 行 M 列的矩阵A, 保证满足以下性质: M>N.    矩阵中每个数都是 [0,N] 中的自然数.    每行中, [1,N] 中每个自然数都恰好出现一次.这意味着每行中 0 恰好出现 M−N 次.    每列中,[1,N] 中每个自然数至多出现一次. 现在我们要在每行中选取一个非零数,…
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘以一个数的逆元: 代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 100005…
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一位火焰之神 “我将赐予你们温暖和希望!” 只见他的身体中喷射出火焰之力 通过坚固的钢铁,传遍了千家万户 这时,只听见人们欢呼 “暖气来啦!” 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很低. 小R的宿…
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干块,每块对应序列上不同的区间 于是查询时对于每个线段树上区间查询时二分查找当前点在哪一块中即可 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include&…
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了(找了好久才找到的良心题解.) 首先看到向下取整的式子要会拆开. 然后套类欧几里德. 这里的类欧几里德比较简单,因为可以看作是\(y=kx\)的正比例的向下整点. 如果\(k>1\),那么就相当与直接算上面的点,然后把直线砍到\(k\leq 1\). 否则取反函数,相当于减小了\(n\)而增大了\(…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ41.html 题解 首先写个乱搞: 一开始每一行都选择第一个非0元素,然后,我们对这个方案不断做更新,直到任意两行选择的值不同.更新方法:如果有两行选了相同的值,那么让靠前的那行选择后一个有0的值. 交上去. 过了. wtf? 然后发现证明这个结论我花的时间远远大于AC这题QAQ 现在我们来证明一下: 首先,如果这个算法算出解了,那么肯定合法.这个比较显然就不证明了. 然后,我们来分两步证明一定有解.…