Softmax函数模型介绍】的更多相关文章

Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并不理解,其实你了解了以后就会发现,Softmax计算简单,效果显著,非常好用. 我们先来直观看一下,Softmax究竟是什么意思 我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能 但有的时候我不想这样,因为这样会造成分值小的那个饥饿.所以我希望分值大的那一项经常取到,分值小的那一项也偶尔可以取到,那么我用softmax就可以了 现在还是a和b,…
把输入值当成幂指数求值,再正则化这些结果值.这个幂运算表示,更大的证据对应更大的假设模型(hypothesis)里面的乘数权重值.反之,拥有更少的证据意味着在假设模型里面拥有更小的乘数系数.假设模型里的权值不可以是0值或者负值.Softmax然后会正则化这些权重值,使它们的总和等于1,以此构造一个有效的概率分布.…
做机器学习的同志们应该对这个都不陌生,这里简单举个例子.一般来说,使用softmax函数来将神经元输出的数值映射到0到1之间,这样神经元输出的值就变为了一个概率值. 公式和例子如下图 公式和例子如下图…
一.前述 Soft-Max是做多分类的,本身是哪个类别的概率大,结果就为对应的类别.为什么称之为Soft判别,原因是归一化之后的概率选择最大的作为结果,而不是只根据分子. 二.原理 sigmod函数: SoftMax函数模型理解: 每一个分类的预测值的概率: soft-max的损失函数: 当k=2时其实损失函数就是:(实际上就是逻辑回归) 三.代码 # softmax多分类 from sklearn import datasets from sklearn.linear_model import…
神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数.对于每一个样例,神经网络可以得到一个n维数组作为输出结果.数组中的每一个维度(也就是每一个输出节点)对应一个类别,通过前向传播算法得到的输出层每个维度值代表属于这个类别的可能性大小.    也就是说,任意事件发生的概率都在0和1之间,且总有某一个事件发生(概率的和为1).如果将分类问题中“一个样例属于某一个类别”看成一个概率事件,那么训练数据的正确答案就符合一个概率分布.如何将神经网络前向传播得到的结果也变成概率分布呢?S…
Softmax Regression Tutorial地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ 从本节開始,难度開始加大了.我将更具体地解释一下这个Tutorial. 1 Softmax Regression 介绍 前面我们已经知道了Logistic Regression.简单的说就推断一个样本属于1或者0.在应用中比方手的识别.那么就是推断一个图片是手还是非手.这就是非常easy的分类. 其实.我们仅…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(−∞,+∞),而有的时候,目标值的范围是[0,1](可…
MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softm…
学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一  MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数字的图片.在这个例子中就是通过机器学习训练一个模型,以识别图片中的数字. MNIST数据集来自 http://yann.lecun.com/exdb/mnist/ Tensorflow提供了一份python代码用于自动下载安装数据集.Tensorflow官方文档中的url打不开,在CSDN上找到了一…
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程. 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World".就好比编程入门有Hello World,机器学习入门…